Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDEL FAVA, Emanuele-
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorBechini, Angela-
dc.contributor.authorBonanni, Paolo-
dc.contributor.authorManfredi, Piero-
dc.date.accessioned2012-10-12T09:40:41Z-
dc.date.available2012-10-12T09:40:41Z-
dc.date.issued2012-
dc.identifier.citationEPIDEMICS, 4 (3), p. 124-131-
dc.identifier.issn1755-4365-
dc.identifier.urihttp://hdl.handle.net/1942/14250-
dc.description.abstractThe analysis of post-vaccination serological data poses nontrivial issues to the epidemiologists and policy makers who want to assess the effects of immunisation programmes. This is especially true for infections on the path to elimination as is the case for measles. We address these problems by using Bayesian Normal mixture models fitted to antibody counts data. This methodology allows us to estimate the seroprevalence of measles by age and, in contrast to conventional methods based on fixed cut-off points, to also distinguish between groups of individuals with different degrees of immunisation. We applied our methodology to two serological samples collected in Tuscany (Italy) in 2003 and in 2005-2006 respectively, i.e., before and after a large vaccination campaign targeted to school-age children. Besides showing the impact of the campaign, we were able to accurately identify a large pocket of susceptible individuals aged about 13-14 in 2005-2006, and a larger group of weakly immune individuals aged about 20 in 2005-2006. These cohorts therefore represent possible targets for further interventions towards measles elimination. (C) 2012 Elsevier B.V. All rights reserved.-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subject.otherInfectious Diseases; measles elimination; vaccination; monitoring herd immunity; seroprevalence data; bayesian mixture models-
dc.subject.otherMeasles elimination; Vaccination; Monitoring herd immunity; Seroprevalence data; Bayesian mixture models-
dc.titleTowards measles elimination in Italy: Monitoring herd immunity by Bayesian mixture modelling of serological data-
dc.typeJournal Contribution-
dc.identifier.epage131-
dc.identifier.issue3-
dc.identifier.spage124-
dc.identifier.volume4-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Del Fava, Emanuele; Shkedy, Ziv] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSt, B-3590 Diepenbeek, Belgium. [Bechini, Angela; Bonanni, Paolo] Univ Florence, Dept Publ Hlth, I-50134 Florence, Italy. [Manfredi, Piero] Univ Pisa, Dept Stat & Math Appl Econ, I-56124 Pisa, Italy.-
local.publisher.placeAMSTERDAM-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.epidem.2012.05.001-
dc.identifier.isi000308500800002-
item.fulltextWith Fulltext-
item.contributorDEL FAVA, Emanuele-
item.contributorSHKEDY, Ziv-
item.contributorBechini, Angela-
item.contributorBonanni, Paolo-
item.contributorManfredi, Piero-
item.fullcitationDEL FAVA, Emanuele; SHKEDY, Ziv; Bechini, Angela; Bonanni, Paolo & Manfredi, Piero (2012) Towards measles elimination in Italy: Monitoring herd immunity by Bayesian mixture modelling of serological data. In: EPIDEMICS, 4 (3), p. 124-131.-
item.accessRightsClosed Access-
item.validationecoom 2013-
crisitem.journal.issn1755-4365-
crisitem.journal.eissn1878-0067-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Towards measles elimination in Italy.pdf
  Restricted Access
936.52 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.