Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCORREA VIEIRA, Afranio Marcio-
dc.contributor.authorLeandro, Roseli A.-
dc.contributor.authorDEMETRIO, Clarice-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2012-11-16T11:29:08Z-
dc.date.available2012-11-16T11:29:08Z-
dc.date.issued2011-
dc.identifier.citationJOURNAL OF APPLIED STATISTICS, 38 (8), p. 1717-1731-
dc.identifier.issn0266-4763-
dc.identifier.urihttp://hdl.handle.net/1942/14380-
dc.description.abstractJoint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.-
dc.description.sponsorshipThe first and third authors were partially supported by The Brazilian National Council for Scientific and Technological Development (CNPq). Part of this work was developed during the sandwich scholarship program of the first author, funded by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), processo BEX 4344/07-3. The authors are thankful to Dr Rosangela Loschi (UFMG) for the useful discussion of ideas. The fourth author gratefully acknowledges the grant #P6/03 of the Belgian Government (Belgian Science Policy).-
dc.language.isoen-
dc.publisherROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD-
dc.rights© 2011 Taylor & Francis-
dc.subject.otherBayesian data analysis; generalized linear models; tissue culture; Markov Chain Monte Carlo; binomial distribution; Gibbs sampling; random effects-
dc.subject.otherBayesian data analysis; generalized linear models; tissue culture; Markov Chain Monte Carlo; binomial distribution; Gibbs sampling; random effects-
dc.titleDouble generalized linear model for tissue culture proportion data: a Bayesian perspective-
dc.typeJournal Contribution-
dc.identifier.epage1731-
dc.identifier.issue8-
dc.identifier.spage1717-
dc.identifier.volume38-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notes[Vieira, Afranio M. C.] Univ Brasilia, ICC Ctr, Dept Estat, BR-70910900 Brasilia, DF, Brazil. [Leandro, Roseli A.; Demetrio, Clarice G. B.] Univ Sao Paulo ESALQ, Dept Ciencias Exatas, BR-13418900 Piracicaba, SP, Brazil. [Molenberghs, Geert] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium. [Molenberghs, Geert] Katholieke Univ Leuven, B-3590 Diepenbeek, Belgium. afranio@unb.br-
local.publisher.placeABINGDON-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1080/02664763.2010.529875-
dc.identifier.isi000291464400012-
item.fullcitationCORREA VIEIRA, Afranio Marcio; Leandro, Roseli A.; DEMETRIO, Clarice & MOLENBERGHS, Geert (2011) Double generalized linear model for tissue culture proportion data: a Bayesian perspective. In: JOURNAL OF APPLIED STATISTICS, 38 (8), p. 1717-1731.-
item.contributorCORREA VIEIRA, Afranio Marcio-
item.contributorLeandro, Roseli A.-
item.contributorDEMETRIO, Clarice-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.validationecoom 2012-
crisitem.journal.issn0266-4763-
crisitem.journal.eissn1360-0532-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
vieira2011.pdf
  Restricted Access
Published version255.41 kBAdobe PDFView/Open    Request a copy
ArtigoDglmBayesianoV9.pdfPeer-reviewed author version349.32 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.