Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14536
Title: Alien limit cycles in Lienard equations
Authors: Coll, B.
DUMORTIER, Freddy 
Prohens, R.
Issue Date: 2013
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
Source: JOURNAL OF DIFFERENTIAL EQUATIONS, 254 (3), p. 1582-1600
Abstract: This paper aims at providing an example of a family of polynomial Lienard equations exhibiting an alien limit cycle. This limit cycle is perturbed from a 2-saddle cycle in the boundary of an annulus of periodic orbits given by a Hamiltonian vector field. The Hamiltonian represents a truncated pendulum of degree 4. In comparison to a former polynomial example, not only the equations are simpler but a lot of tedious calculations can be avoided, making the example also interesting with respect to simplicity in treatment. (C) 2012 Elsevier Inc. All rights reserved.
Notes: [Coll, B.; Prohens, R.] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain. [Dumortier, F.] Univ Hasselt, Dept Wiskunde, B-3590 Diepenbeek, Belgium.
Keywords: Planar vector field; Lienard equation; Hamiltonian perturbation; Limit cycle; Abelian integral; 2-Saddle cycle;Mathematics; planar vector field; Lienard equation; Hamiltonian perturbation; limit cycle; Abelial integral; 2-saddle cycle
Document URI: http://hdl.handle.net/1942/14536
ISSN: 0022-0396
e-ISSN: 1090-2732
DOI: 10.1016/j.jde.2012.11.005
ISI #: 000312574500025
Category: A1
Type: Journal Contribution
Validations: ecoom 2014
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
coll 1.pdf
  Restricted Access
Published version303.69 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.