Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIZIN, Sebastien-
dc.contributor.authorVAN PASSEL, Steven-
dc.contributor.authorDE SCHEPPER, Ellen-
dc.contributor.authorDelvenne, Cathérine-
dc.contributor.authorDijk, Marc-
dc.contributor.authorLeroy, Julie-
dc.date.accessioned2013-02-01T08:06:15Z-
dc.date.available2013-02-01T08:06:15Z-
dc.date.issued2013-
dc.identifier.citationRenewable energy, 57, p. 5-11-
dc.identifier.issn0960-1481-
dc.identifier.urihttp://hdl.handle.net/1942/14560-
dc.description.abstractOrganic photovoltaics (OPV) have developed into a vast research area. Progress in various directions has made it difficult to monitor the technology's precise development state. We offer a patent landscape analysis over all OPV devices, their substrates and encapsulation materials to provide an overview of patenting activity from a historical, organizational, geographical and technological point of view. Such an exercise is instrumental for private companies and research institutes aiming at both internal or external technology creation. We discuss our findings in the context of the Industrial Life Cycle model and find OPV still residing in the fluid technology development phase. Technology development is still following an exponential growth path, with the majority of patents coming from the Asian continent and in general private companies. For devices, the main technological focus can be traced back to the "H01L-031" international patent classification (IPC) main group. For the queried substrates, the most attention has gone to glass, but paper and textile have drawn significant interest too. Finally, encapsulation is found to be a less mature research field given the smaller number of patent families. The latter shows that the technology has not matured to the level where processing is carried out on a commercial scale.-
dc.description.sponsorshipORGANEXT-
dc.language.isoen-
dc.subject.otherOPV; Patent Analysis; Devices; Substrates; Encapsulation; Technology Monitoring-
dc.titleA patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase-
dc.typeJournal Contribution-
dc.identifier.epage11-
dc.identifier.spage5-
dc.identifier.volume57-
local.bibliographicCitation.jcatA1-
dc.relation.references[1] S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature, 428 (2004) 911-918. [2] F.C. Krebs, T. Tromholt, M. Jorgensen, Upscaling of polymer solar cell fabrication using full rollto- roll processing, Nanoscale, 2 (2010) 873-886. [3] F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials and Solar Cells, 93 (2009) 394-412. [4] F.C. Krebs, Pad printing as a film forming technique for polymer solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 484-490. [5] N. Espinosa, R. García-Valverde, A. Urbina, F.C. Krebs, A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions, Solar Energy Materials and Solar Cells, 95 (2011) 1293-1302. [6] B. Kippelen, J.-L. Bredas, Organic photovoltaics, Energy & Environmental Science, 2 (2009) 251- 261. [7] C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer–Fullerene Bulk-Heterojunction Solar Cells, Advanced Materials, 22 (2010) 3839-3856. [8] T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: A review, Energy & Environmental Science, 2 (2009) 347-363. [9] H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials and Solar Cells, 83 (2004) 125-146. [10] M.A. Green, K. Emery, D.L. King, Y. Hisikawa, W. Warta, Solar cell efficiency tables (version 27), Progress in Photovoltaics: Research and Applications, 14 (2006) 45-51. [11] R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells, Materials Today, 15 (2012) 36-49. [12] F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration, Solar Energy Materials and Solar Cells, 93 (2009) 422-441. [13] F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrom, M.S. Pedersen, Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africa" initiative, Energy & Environmental Science, 3 (2010) 512-525. [14] A.J. Medford, M.R. Lilliedal, M. Jørgensen, D. Aarø, H. Pakalski, J. Fyenbo, F.C. Krebs, Gridconnected polymer solar panels: initial considerations of cost, lifetime, and practicality, Opt. Express, 18 (2010) A272-A285. [15] F.C. Krebs, J. Fyenbo, D.M. Tanenbaum, S.A. Gevorgyan, R. Andriessen, B. van Remoortere, Y. Galagan, M. Jorgensen, The OE-A OPV demonstrator anno domini 2011, Energy & Environmental Science, 4 (2011). [16] J. Jensen, H.F. Dam, J.R. Reynolds, A.L. Dyer, F.C. Krebs, Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes, Journal of Polymer Science Part B: Polymer Physics, 50 (2012) 536-545. [17] Dyesol. Global leaders in dye solar cell technology. 2012 [cited 2012, October 10th]; Available from: http://www.dyesol.com/. [18] G24Innovations. Personalizing wireless power. 2012 [cited 2012, October 4th]; Available from: http://www.g24i.com. [19] N. Asim, K. Sopian, S. Ahmadi, K. Saeedfar, M.A. Alghoul, O. Saadatian, S.H. Zaidi, A review on the role of materials science in solar cells, Renewable and Sustainable Energy Reviews, 16 (2012) 5834-5847. [20] C.H. Peters, I.T. Sachs-Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc, M.D. McGehee, High Efficiency Polymer Solar Cells with Long Operating Lifetimes, Advanced Functional Materials, 1 (2011) 491-494. [21] NanoMarkets. Can OPV be saved? 2011 [cited 2012, August 14th]; Available from: http://nanomarkets.net/articles/article/can_opv_be_saved/.[22] N.H. Reich, W.G.J.H.M. van Sark, W.C. Turkenburg, Charge yield potential of indoor-operated solar cells incorporated into Product Integrated Photovoltaic (PIPV), Renewable Energy, 36 (2011) 642-647. [23] N.H. Reich, B. Mueller, A. Armbruster, W.G.J.H.M. van Sark, K. Kiefer, C. Reise, Performance ratio revisited: is PR > 90% realistic?, Progress in Photovoltaics: Research and Applications, 20 (2012) 717-726. [24] L.J.A. Koster, S.E. Shaheen, J.C. Hummelen, Pathways to a New Efficiency Regime for Organic Solar Cells, Advanced Energy Materials, 2 (2012) 1246-1253. [25] C. Lungenschmied, G. Dennler, H. Neugebauer, S.N. Sariciftci, M. Glatthaar, T. Meyer, A. Meyer, Flexible, long-lived, large-area, organic solar cells, Solar Energy Materials and Solar Cells, 91 (2007) 379-384. [26] M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Solar Energy Materials and Solar Cells, 92 (2008) 686-714. [27] C. Powell, T. Bender, Y. Lawryshyn, A model to determine financial indicators for organic solar cells, Solar Energy, 83 (2009) 1977-1984. [28] A. Audenaert, L. De Boeck, S. De Cleyn, S. Lizin, J.-F. Adam, An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: A generic model, Renewable Energy, 35 (2010) 2674-2682. [29] B. Azzopardi, C.J.M. Emmott, A. Urbina, F.C. Krebs, J. Mutale, J. Nelson, Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment, Energy & Environmental Science, 4 (2011) 3741-3753. [30] E. De Schepper, S. Van Passel, J. Manca, T. Thewys, Combining photovoltaics and sound barriers – A feasibility study, Renewable Energy, 46 (2012) 297-303. [31] H. Greijer, L. Karlson, S.-E. Lindquist, H. Anders, Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system, Renewable Energy, 23 (2001) 27- 39. [32] G.A. Keoleian, G.M. Lewis, Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US, Renewable Energy, 28 (2003) 271-293. [33] A. Feltrin, A. Freundlich, Material considerations for terawatt level deployment of photovoltaics, Renewable Energy, 33 (2008) 180-185. [34] F. Alharbi, J.D. Bass, A. Salhi, A. Alyamani, H.-C. Kim, R.D. Miller, Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials, Renewable Energy, 36 (2011) 2753-2758. [35] N. Espinosa, R. García-Valverde, A. Urbina, F. Lenzmann, M. Manceau, D. Angmo, F.C. Krebs, Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing, Solar Energy Materials and Solar Cells, 97 (2012) 3-13. [36] D. Yue, P. Khatav, F. You, S.B. Darling, Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics, Energy & Environmental Science, 5 (2012) 9163- 9172. [37] C.J. Brabec, Organic photovoltaics: technology and market, Solar Energy Materials and Solar Cells, 83 (2004) 273-292. [38] Y.Y. Yang, L. Akers, C.B. Yang, T. Klose, S. Pavlek, Enhancing patent landscape analysis with visualization output, World Patent Information, 32 (2010) 203-220. [39] J.S. Liu, C.-H. Kuan, S.-C. Cha, W.-L. Chuang, G.J. Gau, J.-Y. Jeng, Photovoltaic technology development: A perspective from patent growth analysis, Solar Energy Materials and Solar Cells, 95 (2011) 3130-3136. [40] H. Pettersson, K. Nonomura, L. Kloo, A. Hagfeldt, Trends in patent applications for dyesensitized solar cells, Energy & Environmental Science, 5 (2012) 7376-7380. [41] T.D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, F.C. Krebs, Business, market and intellectual property analysis of polymer solar cells, Solar Energy Materials and Solar Cells, 94 (2010) 1553-1571. [42] J.M. Utterback, Mastering the Dynamics of Innovation, 2nd ed., Harvard Business School Press, Boston, 1996. [43] H. Ernst, Patent information for strategic technology management, World Patent Information, 25 (2003) 233-242.[44] B. Andersen, The hunt for S-shaped growth paths in technological innovation: a patent study, Journal of Evolutionary Economics, 9 (1999) 487-526. [45] R. Haupt, M. Kloyer, M. Lange, Patent indicators for the technology life cycle development, Research Policy, 36 (2007) 387-398. [46] N. Johnstone, I. Haščič, D. Popp, Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts, Environmental and Resource Economics, 45 (2010) 133-155. [47] F.G. Braun, E. Hooper, R. Wand, P. Zloczysti, Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data, Energy Policy, 39 (2011) 2441-2456. [48] C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, V.M. Fthenakis, E.S. Aydil, Photovoltaic manufacturing: Present status, future prospects, and research needs, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29 (2011) 030801- 030816. [49] T. Daim, I. Iskin, X. Li, C. Zielsdorff, A.E. Bayraktaroglu, T. Dereli, A. Durmusoglu, Patent analysis of wind energy technology using the patent alert system, World Patent Information, 34 (2012) 37-47. [50] A. Porter, J. Youtie, P. Shapira, D. Schoeneck, Refining search terms for nanotechnology, Journal of Nanoparticle Research, 10 (2008) 715-728. [51] TWEED. [cited 2012, July 13th]; Available from: http://clusters.wallonie.be/tweed [52] Cide-Socran. [cited 2012, July 13th]; Available from: http://www.cide-socran.be. [53] WIPO. International Patent Classification Official Publication. 26/06/2012 [cited 2012, July 17th]; Available from: http://www.wipo.int/ipcpub. [54] N. Espinosa, M. Hosel, D. Angmo, F.C. Krebs, Solar cells with one-day energy payback for the factories of the future, Energy & Environmental Science, 5 (2012) 5117-5132. [55] M.B. Schubert, J.H. Werner, Flexible solar cells for clothing, Materials Today, 9 (2006) 42-50. [56] S. Hou, Z. Lv, H. Wu, X. Cai, Z. Chu, Yiliguma, D. Zou, Flexible conductive threads for wearable dye-sensitized solar cells, Journal of Materials Chemistry, 22 (2012) 6549-6552. [57] M.C. Barr, J.A. Rowehl, R.R. Lunt, J. Xu, A. Wang, C.M. Boyce, S.G. Im, V. Bulović, K.K. Gleason, Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper, Advanced Materials, 23 (2011) 3500-3505. [58] S. Lizin, S. Van Passel, E. De Schepper, L. Vranken, The future of organic photovoltaic solar cells as a direct power source for consumer electronics, Solar Energy Materials and Solar Cells, 103 (2012) 1-10. [59] S.-J. Liu, J. Shyu, Strategic planning for technology development with patent analysis, International Journal of Technology Management, 13 (1997) 661-680.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.renene.2013.01.027-
dc.identifier.isi000319025000002-
item.fulltextWith Fulltext-
item.validationecoom 2014-
item.contributorVAN PASSEL, Steven-
item.contributorDelvenne, Cathérine-
item.contributorLIZIN, Sebastien-
item.contributorLeroy, Julie-
item.contributorDijk, Marc-
item.contributorDE SCHEPPER, Ellen-
item.fullcitationLIZIN, Sebastien; VAN PASSEL, Steven; DE SCHEPPER, Ellen; Delvenne, Cathérine; Dijk, Marc & Leroy, Julie (2013) A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase. In: Renewable energy, 57, p. 5-11.-
item.accessRightsRestricted Access-
crisitem.journal.issn0960-1481-
crisitem.journal.eissn1879-0682-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
final version.pdf
  Restricted Access
main article1.11 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

19
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

23
checked on Jun 29, 2022

Page view(s)

60
checked on Jun 28, 2022

Download(s)

44
checked on Jun 28, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.