Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIZIN, Sebastien-
dc.contributor.authorVAN PASSEL, Steven-
dc.contributor.authorDE SCHEPPER, Ellen-
dc.contributor.authorVranken, Liesbet-
dc.date.accessioned2013-02-13T08:02:55Z-
dc.date.available2013-02-13T08:02:55Z-
dc.date.issued2013-
dc.identifier.citationBelgian Environmental Economics Day, Leuven, Belgium, 7 February 2013-
dc.identifier.urihttp://hdl.handle.net/1942/14577-
dc.description.abstractSolar powered consumer electronics are a likely starting point for organic photovoltaics’ (OPV) market development. Still, consumers’ willingness to adopt a product depends on how they value it. Therefore, a discrete choice experiments (DCEs) study is presented to find out how Flemish (northern part of Belgium) consumers value solar cell characteristics for solar powered consumer electronics. We contribute to literature by incorporating heterogeneity into our modelling efforts and by identifying the model that has the highest model fit. The random parameter logit (RPL) model with interactions is found to provide a better fit than the latent class (LC) and conditional logit model for our choice data. Consequently, the individual level, assumed by the RPL model, explains heterogeneity better than the segment level, used by the LC model. Furthermore, all mean main effects exhibited the expected sign. Accordingly, we advise OPV scientists to aspire higher efficiencies and longer lifetimes while retaining lower cost, better esthetics, and higher integratability as opposed to its substitute technologies.-
dc.description.sponsorshipINTERREG-ORGANEXT-
dc.language.isoen-
dc.subject.otherRandom Parameter Logit; Latent Class; Solar Powered Consumer Electronics; Heterogeneity; OPV-
dc.titleHeterogeneity in the solar powered consumer electronics market: A discrete choice experiments study-
dc.typeConference Material-
local.bibliographicCitation.conferencedate7 February 2013-
local.bibliographicCitation.conferencenameBelgian Environmental Economics Day-
local.bibliographicCitation.conferenceplaceLeuven, Belgium-
local.bibliographicCitation.jcatC2-
dc.relation.referencesAlfnes F, Guttormsen A, Steine G, Kolstad K. Consumers' willingness to pay for the color of salmon: a choice experiment with real economic incentives. American Journal of Agricultural Economics 2006;88; 1050-1061. Andrews RL, Currim IS. A Comparison of Segment Retention Criteria for Finite Mixture Logit Models. Journal of Marketing Research 2003;40; 235-243. Arrow K, Solow R, Portney P, Leamer E, Radner R, Schuman H. Report of the NOAA Panel on contingent valuation. Federal Register 1993;58; 4601-4614. Banfi S, Farsi M, Filippini M, Jakob M. Willingness to pay for energy-saving measures in residential buildings. Energy Economics 2008;30; 503-516. Bateman I, Carson R, Day B, Hanemann M, Hanley N, Hett T, Jones-Lee M, Loomes G, Mourato S, Özdemiroglu E, Pearce D, Sugden R, Swanson J. Economic valuation with stated preference techniques: A manual. Edward Elgar: Cheltenham; 2002. Ben-Akiva M, Lerman S. Discrete Choice Analysis: Theory and Application to Travel Demand. MIT press: Camebrigde, Massachussets; 1985. Ben-Akiva M, Swait J. The Akaike Likelihood Ratio Index. Transportation Science 1986;20; 133-136. Bergmann A, Colombo S, Hanley N. Rural versus urban preferences for renewable energy developments. Ecological Economics 2008;65; 616-625. Bergmann A, Hanley N, Wright R. Valuing the attributes of renewable energy investments. Energy Policy 2006;34; 1004-1014. Birol E, Karousakis K, Koundouri P. Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecological Economics 2006;60; 145-156. Blamey R, Louviere J, Bennett J, 2001. Choice set design, In: Bennett J, Blamey R (Eds), The choice modelling approach to environmental valuation. Edward Elgar, Northhampton; 2001. pp. 133-156. Blazy J-M, Carpentier A, Thomas A. The willingness to adopt agro-ecological innovations: Application of choice modelling to Caribbean banana planters. Ecological Economics 2011;72; 140-150. Bliemer M, Rose J. Construction of experimental designs for mixed logit models allowing for correlation across choice observations. Transportation Research Part B: Methodological 2010;44; 720-734. Bliemer M, Rose J. Experimental design influences on stated choice outputs: An empirical study in air travel choice. Transportation Research Part A: Policy and Practice 2011;45; 63-79. Borchers A, Duke J, Parsons G. Does willingness to pay for green energy differ by source? Energy Policy 2007;35; 3327-3334. Brabec C. Organic photovoltaics: technology and market. Solar Energy Materials and Solar Cells 2004;83; 273-292. Brabec C, Gowrisanker S, Halls J, Laird D, Jia S, Williams S. Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2010;22; 3839-3856. Carlsson F, Frykblom P, Johan Lagerkvist C. Using cheap talk as a test of validity in choice experiments. Economics Letters 2005;89; 147-152. Carlsson F, Frykblom P, Liljenstolpe C. Valuing wetland attributes: an application of choice experiments. Ecological Economics 2003;47; 95-103. Carlsson F, Martinsson P. Do Hypothetical and Actual Marginal Willingness to Pay Differ in Choice Experiments?: Application to the Valuation of the Environment. Journal of Environmental Economics and Management 2001;41; 179-192. Carlsson F, Martinsson P. Does it matter when a power outage occurs? — A choice experiment study on the willingness to pay to avoid power outages. Energy Economics 2008;30; 1232-1245. Casey J, Kahn J, Rivas A. Willingness to accept compensation for the environmental risks of oil transport on the Amazon: A choice modeling experiment. Ecological Economics 2008;67; 552-559. Caussade S, Ortúzar J, Rizzi L, Hensher D. Assessing the influence of design dimensions on stated choice experiment estimates. Transportation Research Part B: Methodological 2005;39; 621-640. Cicia G, Cembalo L, Del Giudice T, Palladino A. Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey. Energy Policy 2012;42; 59-66. Couture S, Garcia S, Reynaud A. Household energy choices and fuelwood consumption: An econometric approach using French data. Energy Economics 2012;34; 1972-1981. Danthurebandara V, Yu J, Vandebroek M. Effect of choice complexity on design efficiency in conjoint choice experiments. Journal of Statistical Planning and Inference 2011;141; 2276-2286. Dawes R, Corrigan B. Linear models in decision making. Psychological Bulletin 1974;81; 95-106. Day B, Bateman I, Carson R, Scarpa R, Louviere J, Wang P, Dupont D, 2010. Task Independence in Stated Preference Studies: A Test of Order Effect Explanations, World Conference of Environmental and Resource Economists, Montreal, Canada. De Bekker-Grob E, Ryan M, Gerard K. Discrete choice experiments in health economics: a review of the literature. Health Economics 2010; 1-28. Domínguez-Torreiro M, Soliño M. Provided and perceived status quo in choice experiments: Implications for valuing the outputs of multifunctional rural areas. Ecological Economics 2011;70; 2523-2531. Drechsler M, Ohl C, Meyerhoff J, Eichhorn M, Monsees J. Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines. Energy Policy 2011;39; 3845-3854. El Chaar L, Lamont L, El Zein N. Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews 2011;15; 2165-2175. Espinosa N, Hosel M, Angmo D, Krebs F. Solar cells with one-day energy payback for the factories of the future. Energy & Environmental Science 2012;5; 5117-5132. Ferrini S, Scarpa R. Designs with a priori information for nonmarket valuation with choice experiments: A Monte Carlo study. Journal of Environmental Economics and Management 2007;53; 342-363. Fosgerau M, Bierlaire M. A practical test for the choice of mixing distribution in discrete choice models. Transportation Research Part B: Methodological 2007;41; 784-794. Gracia A, Barreiro-Hurlé J, Pérez y Pérez L. Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region. Energy Policy 2012;50; 784-794. Han S-Y, Kwak S-J, Yoo S-H. Valuing environmental impacts of large dam construction in Korea: An application of choice experiments. Environmental Impact Assessment Review 2008;28; 256-266. Hanley N, Mourato S, Wright R. Choice Modelling Approaches: A Superior Alternative for Environmental Valuatioin? Journal of Economic Surveys 2001;15; 435-462. Harrison G, 2007. Making Choice Studies Incentive Compatible, In: Kanninen BJ (Ed), Valuing Environmental Amenities Using Stated Choice Studies, vol. 8. Springer Netherlands, Dordrecht; 2007. pp. 67-110. Hausman J, McFadden D. Specification Tests for the Multinomial Logit Model. Econometrica 1984;52; 1219-1240. Hensher D. Hypothetical bias, choice experiments and willingness to pay. Transportation Research Part B: Methodological 2010;44; 735-752. Hensher D, Greene W. The Mixed Logit model: The state of practice. Transportation 2003;30; 133-176. Hensher D, Rose J, Greene W. Applied Choice Analysis: A Primer. Cambridge University Press: Camebridge; 2005. Hole A. A comparison of approaches to estimating confidence intervals for willingness to pay measures. Health Economics 2007a;16; 827-840. Hole A. Fitting mixed logit models by using maximum simulated likelihood. Stata Journal 2007b;7; 388-401. Hoyos D. The state of the art of environmental valuation with discrete choice experiments. Ecological Economics 2010;69; 1595-1603. Jensen K, Clark C, English B, Menard R, Skahan D, Marra A. Willingness to pay for E85 from corn, switchgrass, and wood residues. Energy Economics 2010;32; 1253-1262. Jørgensen M, Norrman K, Krebs F. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells 2008;92; 686-714. Kataria M. Willingness to pay for environmental improvements in hydropower regulated rivers. Energy Economics 2009;31; 69-76. Kontoleon A, Yabe M. Assessing the impacts of alternative ‘opt-out’ formats in choice experiment studies: consumer preferences for genetically modified content and production information in food. Journal of Agricultural Policy Research 2003;5; 1-43. Krebs F, Fyenbo J, Jorgensen M. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. Journal of Materials Chemistry 2010a;20; 8994-9001. Krebs F, Nielsen T, Fyenbo J, Wadstrom M, Pedersen M. Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africa" initiative. Energy & Environmental Science 2010b;3; 512-525. Krebs F, Tromholt T, Jorgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2010c;2; 873-886. Ku S-J, Yoo S-H. Willingness to pay for renewable energy investment in Korea: A choice experiment study. Renewable and Sustainable Energy Reviews 2010;14; 2196-2201. Kuhfeld W, 2010. Marketing Research Methods in SAS: Experimental Design, Choice, Conjoint, and Graphical Techniques, Cary, p. 1309. Kuhfeld W, Tobias R, Garratt M. Efficient Experimental Design with Marketing Research Applications. Journal of Marketing Research 1994;31; 545-557. Lee J-S, Yoo S-H. Measuring the environmental costs of tidal power plant construction: A choice experiment study. Energy Policy 2009;37; 5069-5074. Lizin S, Van Passel S, De Schepper E, Vranken L. The future of organic photovoltaic solar cells as a direct power source for consumer electronics. Solar Energy Materials and Solar Cells 2012;103; 1-10. Long J. Regression Models for Categorical and Limited Dependent Variables. SAGE Publications: London; 1997. Longo A, Markandya A, Petrucci M. The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy. Ecological Economics 2008;67; 140-152. Louviere J, Hensher D. On the design and analysis of simulated choice or allocation experiments in travel choice modelling. Transportation Research Record 1982;890; 11-17. Louviere J, Hensher D, Swait J. Stated choice methods: analysis and applications. Cambridge University Press; 2000. Louviere J, Woodworth G. Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data. Journal of Marketing Research 1983;20; 350-367. Lusk J, Schroeder T. Are Choice Experiments Incentive Compatible? A Test with Quality Differentiated Beef Steaks. American Journal of Agricultural Economics 2004;86; 467-482. McFadden D, 1974. Conditional logit analysis of qualitative choice behaviour., In: Zarembka P (Ed), Frontiers in Econometrics. Academic Press, New York; 1974. pp. 105-142. McFadden D, Train K. Mixed MNL models for discrete response. Journal of Applied Econometrics 2000;15; 447-470. Meyerhoff J, Ohl C, Hartje V. Landscape externalities from onshore wind power. Energy Policy 2010;38; 82-92. Michelsen C, Madlener R. Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany. Energy Economics 2012;34; 1271-1283. Nielsen T, Cruickshank C, Foged S, Thorsen J, Krebs F. Business, market and intellectual property analysis of polymer solar cells. Solar Energy Materials and Solar Cells 2010;94; 1553-1571. Paulrud S, Laitila T. Farmers’ attitudes about growing energy crops: A choice experiment approach. Biomass and Bioenergy 2010;34; 1770-1779. Pepermans G. The value of continuous power supply for Flemish households. Energy Policy 2011;39; 7853-7864. Rose J, Bliemer M, Hensher D, Collins A. Designing efficient stated choice experiments in the presence of reference alternatives. Transportation Research Part B: Methodological 2008;42; 395-406. Ryan M, Gerard K, Amaya-Amaya M, 2008. Discrete Choice Experiments in a Nutshell, In: Ryan M, Gerard K, Amaya-Amaya M (Eds), Using Discrete Choice Experiments to Value Health and Health Care, vol. 11. Springer Netherlands; 2008. pp. 13-46. Sardianou E. Estimating energy conservation patterns of Greek households. Energy Policy 2007;35; 3778-3791. Scarpa R, Willis K. Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies. Energy Economics 2010;32; 129-136. Schläpfer F, Fischhoff B. Task familiarity and contextual cues predict hypothetical bias in a meta-analysis of stated preference studies. Ecological Economics 2012;81; 44-47. Soliño M. External benefits of biomass-e in Spain: An economic valuation. Bioresource Technology 2010;101; 1992-1997. Strazzera E, Mura M, Contu D. Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach. Energy Policy 2012;48; 334-347. Susaeta A, Lal P, Alavalapati J, Mercer E. Random preferences towards bioenergy environmental externalities: A case study of woody biomass based electricity in the Southern United States. Energy Economics 2011;33; 1111-1118. Swait J, 2007. Advanced choice models, In: Kanninen BJ (Ed), Valuing Environmental Amenities Using Stated Choice Studies, vol. 8. Springer, Arlington; 2007. pp. 229-293. Taylor T, Longo A. Valuing algal bloom in the Black Sea Coast of Bulgaria: A choice experiments approach. Journal of Environmental Management 2010;91; 1963-1971. Tesfaye A, Brouwer R. Testing participation constraints in contract design for sustainable soil conservation in Ethiopia. Ecological Economics 2012;73; 168-178. Thurstone L. A law of comparative judgment. Psychological Review 1927;34; 273–286. Train K. Discrete choice methods with simulation. Cambridge University Press: Cambrigde; 2003. Travisi C, Nijkamp P. Valuing environmental and health risk in agriculture: A choice experiment approach to pesticides in Italy. Ecological Economics 2008;67; 598-607. Veblen T. The Theory of the Leisure Class: An Economic Study in the Evolution of Institutions. Adegi Graphics LLC; 2000. Ward D, Clark C, Jensen K, Yen S. Consumer willingness to pay for appliances produced by Green Power Partners. Energy Economics 2011;33; 1095-1102. Westerberg V, Lifran R, Olsen S. To restore or not? A valuation of social and ecological functions of the Marais des Baux wetland in Southern France. Ecological Economics 2010;69; 2383-2393. Willis K, Scarpa R, Gilroy R, Hamza N. Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption. Energy Policy 2011;39; 6021-6029. Wittink D, Krishnamurthi L, Reibstein D. The effect of differences in the number of attribute levels on conjoint results. Marketing Letters 1990;1; 113-123. Yang C-J. Reconsidering solar grid parity. Energy Policy 2010;38; 3270-3273.-
local.type.refereedRefereed-
local.type.specifiedPaper-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
item.fullcitationLIZIN, Sebastien; VAN PASSEL, Steven; DE SCHEPPER, Ellen & Vranken, Liesbet (2013) Heterogeneity in the solar powered consumer electronics market: A discrete choice experiments study. In: Belgian Environmental Economics Day, Leuven, Belgium, 7 February 2013.-
item.contributorVAN PASSEL, Steven-
item.contributorLIZIN, Sebastien-
item.contributorVranken, Liesbet-
item.contributorDE SCHEPPER, Ellen-
Appears in Collections:Research publications
Show simple item record

Page view(s)

52
checked on Jul 2, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.