Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14670
Title: Screening for drug-induced hepatotoxicity in primary mouse hepatocytes using acetaminophen, amiodarone, and cyclosporin a as model compounds: an omics-guided approach.
Authors: VAN SUMMEREN, Anke 
Renes, Johan
Lizarraga, Daneida
Bouwman, Freek G.
NOBEN, Jean-Paul 
VAN DELFT, Joost 
KLEINJANS, J. 
MARIMAN, Edwin 
Issue Date: 2013
Source: OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 17 (2), p. 71-83
Abstract: Drug-induced hepatotoxicity is a leading cause of attrition for candidate pharmaceuticals in development. New preclinical screening methods are crucial to predict drug toxicity prior to human studies. Of all in vitro hepatotoxicity models, primary human hepatocytes are considered as ‘the gold standard.’ However, their use is hindered by limited availability and inter-individual variation. These barriers may be overcome by using primary mouse hepatocytes. We used differential in gel electrophoresis (DIGE) to study large-scale protein expression of primary mouse hepatocytes. These hepatocytes were exposed to three well-defined hepatotoxicants: acetaminophen, amiodarone, and cyclosporin A. Each hepatotoxicant induces a different hepatotoxic phenotype. Based on the DIGE results, the mRNA expression levels of deregulated proteins from cyclosporin A-treated cells were also analyzed. We were able to distinguish cyclosporin A from controls, as well as acetaminophen and amiodarone-treated samples. Cyclosporin A induced endoplasmic reticulum (ER) stress and altered the ER-Golgi transport. Moreover, liver carboxylesterase and bile salt sulfotransferase were differentially expressed. These proteins were associated with a protective adaptive response against cyclosporin A-induced cholestasis. The results of this study are comparable with effects in HepG2 cells. Therefore, we suggest both models can be used to analyze the cholestatic properties of cyclosporin A. Furthermore, this study showed a conserved response between primary mouse hepatocytes and HepG2 cells. These findings collectively lend support for use of omics strategies in preclinical toxicology, and might inform future efforts to better link preclinical and clinical research in rational drug development.
Document URI: http://hdl.handle.net/1942/14670
ISSN: 1536-2310
e-ISSN: 1557-8100
DOI: 10.1089/omi.2012.0079
ISI #: 000314581900002
Category: A1
Type: Journal Contribution
Validations: ecoom 2014
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

13
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

16
checked on Apr 30, 2024

Page view(s)

56
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.