Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1469
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHENS, Niel-
dc.contributor.authorAERTS, Marc-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2007-05-07T08:46:20Z-
dc.date.available2007-05-07T08:46:20Z-
dc.date.issued2006-
dc.identifier.citationSTATISTICS IN MEDICINE, 25(14). p. 2502-2520-
dc.identifier.issn0277-6715-
dc.identifier.urihttp://hdl.handle.net/1942/1469-
dc.description.abstractThe Akaike information criterion, AIC, is one of the most frequently used methods to select one or a few good, optimal regression models from a set of candidate models. In case the sample is incomplete, the naive use of this criterion on the so-called complete cases can lead to the selection of poor or inappropriate models. A similar problem occurs when a sample based on a design with unequal selection probabilities, is treated as a simple random sample. In this paper, we consider a modification of AIC, based on reweighing the sample in analogy with the weighted Horvitz-Thompson estimates. It is shown that this weighted AIC-criterion provides better model choices for both incomplete and design-based samples. The use of the weighted AIC-criterion is illustrated on data from the Belgian Health Interview Survey, which motivated this research. Simulations show its performance in a variety of settings. Copyright (c) 2006 John Wiley & Sons, Ltd.-
dc.description.sponsorshipFinancial support from the IAP research network No. P5=24 of the Belgian Government (Belgian Science Policy) is gratefully acknowledged.-
dc.language.isoen-
dc.rights(C) 2006 John Wiley & Sons, Ltd.-
dc.subject.othermissing data; weighted likelihood; model selection; complex designs; Akaike information criterion; WEIGHTED LIKELIHOOD METHODOLOGY; AKAIKE INFORMATION CRITERION; ESTIMATING EQUATIONS; REGRESSION; 2-STAGE; FIT-
dc.subject.othermissing data; weighted likelihood; model selection; complex designs; Akaike information criterion-
dc.titleModel selection for incomplete and design-based samples-
dc.typeJournal Contribution-
dc.identifier.epage2520-
dc.identifier.issue14-
dc.identifier.spage2502-
dc.identifier.volume25-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/sim.2559-
dc.identifier.isi000239052300011-
item.validationecoom 2007-
item.contributorHENS, Niel-
item.contributorAERTS, Marc-
item.contributorMOLENBERGHS, Geert-
item.fullcitationHENS, Niel; AERTS, Marc & MOLENBERGHS, Geert (2006) Model selection for incomplete and design-based samples. In: STATISTICS IN MEDICINE, 25(14). p. 2502-2520.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0277-6715-
crisitem.journal.eissn1097-0258-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
hens2006.pdf
  Restricted Access
Published version196.33 kBAdobe PDFView/Open    Request a copy
Model_selection_for_incomplete_and_desig.pdfPeer-reviewed author version473.08 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.