Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1469
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHENS, Niel-
dc.contributor.authorAERTS, Marc-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2007-05-07T08:46:20Z-
dc.date.available2007-05-07T08:46:20Z-
dc.date.issued2006-
dc.identifier.citationSTATISTICS IN MEDICINE, 25(14). p. 2502-2520-
dc.identifier.issn0277-6715-
dc.identifier.urihttp://hdl.handle.net/1942/1469-
dc.description.abstractThe Akaike information criterion, AIC, is one of the most frequently used methods to select one or a few good, optimal regression models from a set of candidate models. In case the sample is incomplete, the naive use of this criterion on the so-called complete cases can lead to the selection of poor or inappropriate models. A similar problem occurs when a sample based on a design with unequal selection probabilities, is treated as a simple random sample. In this paper, we consider a modification of AIC, based on reweighing the sample in analogy with the weighted Horvitz-Thompson estimates. It is shown that this weighted AIC-criterion provides better model choices for both incomplete and design-based samples. The use of the weighted AIC-criterion is illustrated on data from the Belgian Health Interview Survey, which motivated this research. Simulations show its performance in a variety of settings. Copyright (c) 2006 John Wiley & Sons, Ltd.-
dc.description.sponsorshipFinancial support from the IAP research network No. P5=24 of the Belgian Government (Belgian Science Policy) is gratefully acknowledged.-
dc.language.isoen-
dc.rights(C) 2006 John Wiley & Sons, Ltd.-
dc.subject.othermissing data; weighted likelihood; model selection; complex designs; Akaike information criterion; WEIGHTED LIKELIHOOD METHODOLOGY; AKAIKE INFORMATION CRITERION; ESTIMATING EQUATIONS; REGRESSION; 2-STAGE; FIT-
dc.subject.othermissing data; weighted likelihood; model selection; complex designs; Akaike information criterion-
dc.titleModel selection for incomplete and design-based samples-
dc.typeJournal Contribution-
dc.identifier.epage2520-
dc.identifier.issue14-
dc.identifier.spage2502-
dc.identifier.volume25-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/sim.2559-
dc.identifier.isi000239052300011-
item.contributorHENS, Niel-
item.contributorAERTS, Marc-
item.contributorMOLENBERGHS, Geert-
item.accessRightsOpen Access-
item.fullcitationHENS, Niel; AERTS, Marc & MOLENBERGHS, Geert (2006) Model selection for incomplete and design-based samples. In: STATISTICS IN MEDICINE, 25(14). p. 2502-2520.-
item.fulltextWith Fulltext-
item.validationecoom 2007-
crisitem.journal.issn0277-6715-
crisitem.journal.eissn1097-0258-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
hens2006.pdf
  Restricted Access
Published version196.33 kBAdobe PDFView/Open    Request a copy
Model_selection_for_incomplete_and_desig.pdfPeer-reviewed author version473.08 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

54
checked on Oct 28, 2025

WEB OF SCIENCETM
Citations

53
checked on Oct 26, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.