Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/1472
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | FIEUWS, Steffen | - |
dc.contributor.author | VERBEKE, Geert | - |
dc.contributor.author | Boen, F | - |
dc.contributor.author | Delecluse, C | - |
dc.date.accessioned | 2007-05-07T08:54:05Z | - |
dc.date.available | 2007-05-07T08:54:05Z | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 55(4). p. 449-460 | - |
dc.identifier.issn | 0035-9254 | - |
dc.identifier.uri | http://hdl.handle.net/1942/1472 | - |
dc.description.abstract | Questionnaires that are used to measure the effect of an intervention often consist of different sets of items, each set possibly measuring another concept. Mixed models with set-specific random effects are a flexible tool to model the different sets of items jointly. However, computational problems typically arise as the number of sets increases. This is especially true when the random-effects distribution cannot be integrated out analytically, as with mixed models for binary data. A pairwise modelling strategy, in which all possible bivariate mixed models are fitted and where inference follows from pseudolikelihood theory, has been proposed as a solution. This approach has been applied to assess the effect of physical activity on psychocognitive functioning, the latter measured by a battery of questionnaires. | - |
dc.language.iso | en | - |
dc.subject.other | generalized linear mixed model; high dimensional mixed model; joint model; multidimensional item response theory model; multivariate mixed model; pseudolikelihood; LIKELIHOOD | - |
dc.title | High dimensional multivariate mixed models for binary questionnaire data | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 460 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 449 | - |
dc.identifier.volume | 55 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1111/j.1467-9876.2006.00546.x | - |
dc.identifier.isi | 000239895400002 | - |
item.fulltext | No Fulltext | - |
item.contributor | FIEUWS, Steffen | - |
item.contributor | VERBEKE, Geert | - |
item.contributor | Boen, F | - |
item.contributor | Delecluse, C | - |
item.fullcitation | FIEUWS, Steffen; VERBEKE, Geert; Boen, F & Delecluse, C (2006) High dimensional multivariate mixed models for binary questionnaire data. In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 55(4). p. 449-460. | - |
item.accessRights | Closed Access | - |
crisitem.journal.issn | 0035-9254 | - |
crisitem.journal.eissn | 1467-9876 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.