Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1472
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFIEUWS, Steffen-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorBoen, F-
dc.contributor.authorDelecluse, C-
dc.date.accessioned2007-05-07T08:54:05Z-
dc.date.available2007-05-07T08:54:05Z-
dc.date.issued2006-
dc.identifier.citationJOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 55(4). p. 449-460-
dc.identifier.issn0035-9254-
dc.identifier.urihttp://hdl.handle.net/1942/1472-
dc.description.abstractQuestionnaires that are used to measure the effect of an intervention often consist of different sets of items, each set possibly measuring another concept. Mixed models with set-specific random effects are a flexible tool to model the different sets of items jointly. However, computational problems typically arise as the number of sets increases. This is especially true when the random-effects distribution cannot be integrated out analytically, as with mixed models for binary data. A pairwise modelling strategy, in which all possible bivariate mixed models are fitted and where inference follows from pseudolikelihood theory, has been proposed as a solution. This approach has been applied to assess the effect of physical activity on psychocognitive functioning, the latter measured by a battery of questionnaires.-
dc.language.isoen-
dc.subject.othergeneralized linear mixed model; high dimensional mixed model; joint model; multidimensional item response theory model; multivariate mixed model; pseudolikelihood; LIKELIHOOD-
dc.titleHigh dimensional multivariate mixed models for binary questionnaire data-
dc.typeJournal Contribution-
dc.identifier.epage460-
dc.identifier.issue4-
dc.identifier.spage449-
dc.identifier.volume55-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1111/j.1467-9876.2006.00546.x-
dc.identifier.isi000239895400002-
item.fulltextNo Fulltext-
item.contributorFIEUWS, Steffen-
item.contributorVERBEKE, Geert-
item.contributorBoen, F-
item.contributorDelecluse, C-
item.fullcitationFIEUWS, Steffen; VERBEKE, Geert; Boen, F & Delecluse, C (2006) High dimensional multivariate mixed models for binary questionnaire data. In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 55(4). p. 449-460.-
item.accessRightsClosed Access-
crisitem.journal.issn0035-9254-
crisitem.journal.eissn1467-9876-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.