Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/147
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGijbels, I.-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2004-08-26T15:05:56Z-
dc.date.available2004-08-26T15:05:56Z-
dc.date.issued1988-
dc.identifier.citationJ. Statist. Planning and Inf., 18(2), p. 151-160-
dc.identifier.urihttp://hdl.handle.net/1942/147-
dc.description.abstractSufficient conditions are given under which quantiles Image of the product-limit estimator allow a Bahadur-type representation with remainder term op(n−1/2). Here {pn} is either a deterministic or random sequence. This weak representation theorem and a uniform version of it lead to first-order asymptotic results in the estimation theory for quantiles of the lifetime distribution and of the residual lifetime distribution.-
dc.language.isoen_US-
dc.subjectMathematical Statistics-
dc.subjectNon and semiparametric methods-
dc.titleWeak asymptotic representations for quantiles of the product-limit estimator-
dc.typeJournal Contribution-
dc.identifier.epage160-
dc.identifier.issue2-
dc.identifier.spage151-
dc.identifier.volume18-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0378-3758(88)90002-X-
item.contributorGijbels, I.-
item.contributorVERAVERBEKE, Noel-
item.fullcitationGijbels, I. & VERAVERBEKE, Noel (1988) Weak asymptotic representations for quantiles of the product-limit estimator. In: J. Statist. Planning and Inf., 18(2), p. 151-160.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.