Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/147
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGijbels, I.-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2004-08-26T15:05:56Z-
dc.date.available2004-08-26T15:05:56Z-
dc.date.issued1988-
dc.identifier.citationJ. Statist. Planning and Inf., 18(2), p. 151-160-
dc.identifier.urihttp://hdl.handle.net/1942/147-
dc.description.abstractSufficient conditions are given under which quantiles Image of the product-limit estimator allow a Bahadur-type representation with remainder term op(n−1/2). Here {pn} is either a deterministic or random sequence. This weak representation theorem and a uniform version of it lead to first-order asymptotic results in the estimation theory for quantiles of the lifetime distribution and of the residual lifetime distribution.-
dc.language.isoen_US-
dc.subjectMathematical Statistics-
dc.subjectNon and semiparametric methods-
dc.titleWeak asymptotic representations for quantiles of the product-limit estimator-
dc.typeJournal Contribution-
dc.identifier.epage160-
dc.identifier.issue2-
dc.identifier.spage151-
dc.identifier.volume18-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1016/0378-3758(88)90002-X-
item.fulltextNo Fulltext-
item.fullcitationGijbels, I. & VERAVERBEKE, Noel (1988) Weak asymptotic representations for quantiles of the product-limit estimator. In: J. Statist. Planning and Inf., 18(2), p. 151-160.-
item.accessRightsClosed Access-
item.contributorGijbels, I.-
item.contributorVERAVERBEKE, Noel-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

15
checked on Sep 30, 2025

WEB OF SCIENCETM
Citations

11
checked on Oct 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.