Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14830
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDE MAESSCHALCK, Peter-
dc.date.accessioned2013-03-27T08:41:45Z-
dc.date.available2013-03-27T08:41:45Z-
dc.date.issued2014-
dc.identifier.citationDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 34 (2), p. 677-688-
dc.identifier.issn1078-0947-
dc.identifier.urihttp://hdl.handle.net/1942/14830-
dc.description.abstractThis paper deals with normal forms about contact points (turning points) of nilpotent type that one frequently encounters in the study of planar slow-fast systems. In case the contact point of an analytic slow-fast vector field is of order two, we prove that the slow-fast vector field can locally be written as a slow-fast Liénard equation up to exponentially small error. The proof is based on the use of Gevrey asymptotics. Furthermore, for slow-fast jump points, we eliminate the exponentially small remainder.-
dc.description.sponsorshipFWO Vlaanderen-
dc.language.isoen-
dc.subject.othersingular perturbations; slow-fast vector field; normal forms; Gevrey asymptotics-
dc.titleGevrey normal forms for nilpotent contact points of order two-
dc.typeJournal Contribution-
dc.identifier.epage688-
dc.identifier.issue2-
dc.identifier.spage677-
dc.identifier.volume34-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.3934/dcds.2014.34.677-
dc.identifier.isi000325646400018-
item.contributorDE MAESSCHALCK, Peter-
item.fullcitationDE MAESSCHALCK, Peter (2014) Gevrey normal forms for nilpotent contact points of order two. In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 34 (2), p. 677-688.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.validationecoom 2014-
crisitem.journal.issn1078-0947-
crisitem.journal.eissn1553-5231-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
jump-normalform.pdf
  Restricted Access
132.11 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.