Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14863
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGRIMSON, Rafael-
dc.contributor.authorHeintz, Joos-
dc.contributor.authorKUIJPERS, Bart-
dc.date.accessioned2013-03-29T10:43:10Z-
dc.date.available2013-03-29T10:43:10Z-
dc.date.issued2012-
dc.identifier.citationAPPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 23 (3-4), p. 179-193-
dc.identifier.issn0938-1279-
dc.identifier.urihttp://hdl.handle.net/1942/14863-
dc.description.abstractLet P:=(P1,…,Ps) be a given family of n-variate polynomials with integer coefficients and suppose that the degrees and logarithmic heights of these polynomials are bounded by d and h, respectively. Suppose furthermore that for each 1 ≤ i ≤ s the polynomial P i can be evaluated using L arithmetic operations (additions, subtractions, multiplications and the constants 0 and 1). Assume that the family P is in a suitable sense generic. We construct a database D , supported by an algebraic computation tree, such that for each x∈[0,1]n the query for the signs of P 1(x), . . . , P s (x) can be answered using hdO(n2) comparisons and nL arithmetic operations between real numbers. The arithmetic-geometric tools developed for the construction of D are then employed to exhibit example classes of systems of n polynomial equations in n unknowns whose consistency may be checked using only few arithmetic operations, admitting, however, an exponential number of comparisons.-
dc.description.sponsorshipFWO G.0344.05-
dc.language.isoen-
dc.rightsJournal (Applicable Algebra in Engineering, Communication and Computing) copyright-
dc.subject.otherAlgebraic Geometry; Complexity; Databases-
dc.titleEvaluating geometric queries using few arithmetic operations-
dc.typeJournal Contribution-
dc.identifier.epage193-
dc.identifier.issue3-4-
dc.identifier.spage179-
dc.identifier.volume23-
local.bibliographicCitation.jcatA1-
dc.relation.references1. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimi- nation. In: IEEE Symposium on Foundations of Computer Science, pp. 632–641 (1994) 2. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10. Springer, Secaucus, NJ, USA (2006) 3. Bost,J.B.,Gillet,H.,Soulé,C.:HeightsofprojectivevarietiesandpositiveGreenforms.J.Am.Math. Soc. 7, 903–1027 (1994) 4. Bürgisser,P.,Clausen,M.,Shokrollahi,M.A.:AlgebraiccomplexityTheory,Grundlehrendermathe- matischen Wissenschaften. Springer, New York (1997) 5. Charbit, P., Jeandel, E., Koiran, P., Perifel, S., Thomassé, S.: Finding a vector orthogonal to roughly half a collection of vectors. J. Complex. 24(1), 39–53 (2008) 6. Dickenstein, A., Fitchas, N., Giusti, M., Sessa, C.: The membership problem for unmixed polynomial ideals is solvable in single exponential time. Discret. Appl. Math. 33, 73–94 (1991) 7. Fulton, W.: Intersection Theory, 2nd edn., Ergebnisse der Mathematik, no. 3. Springer, New York (1984) 8. Grigoriev, D.: Topological complexity of the range searching. J. Complex. 16(1), 50–53 (2000) 123 Author's personal copy Evaluating geometric queries using few arithmetic operations 193 9. Grimson,R.,Heintz,J.,Kuijpers,B.:Efficientevaluationofspecificqueriesinconstraintdatabases.Inf. Process. Lett. 111(19), 941–944 (2011) 10. Heintz,J.:Definabilityandfastquantifiereliminationoveralgebraicallyclosedfields.Theor.Comput. Sci. 24, 239–277 (1983) 11. Heintz,J.,Kuijpers,B.,RojasParedes,A.:Softwareengineeringandcomplexityineffectivealgebraic geometry. J. Complex. (2012). doi:10.1016/j.jco.2012.04.005 12. Knuth, D.E.: Art of Computer Programming, vol. 3: Sorting and Searching, 2nd edn. Addison-Wesley Professional, New York (1998) 13. Koiran,P.,Perifel,S.:VPSPACEandatransfertheoremoverthereals.Comput.Complex.18(4),551– 575 (2009) 14. Krick, T., Pardo, L.M. : A computational method for diophantine approximation, algorithms in alge- braic geometry and applications. In: González-Vega, L., Recio, T. (eds.) Proceedings of MEGA’94, Progress in Mathematics, vol. 143, pp. 193–254. Birkhäuser Verlag, Basel (1996) 15. Kuper,G.,Libkin,L.,Paredaens,J.:ConstraintDatabases.Springer,NewYork(2000) 16. Meiser, S.: Point location in arrangements of hyperplanes. Inf. Comput. 106(2), 286–303 (1993) 17. Meyerauf der Heide, F.: A polynomial linear search algorithm for the n-dimensional knapsack prob- lem. J. ACM 31(3), 668–676 (1984) 18. Meyerauf der Heide, F.: Fast algorithms for n-dimensional restrictions of hard problems. J. ACM 35(3), 740–747 (1988) 19. Mignotte, M.: Mathematics for Computer Algebra. Springer, New York (1992) 20. Philippon, P.: Sur des hauteurs alternatives, I. Math. Ann. 289, 255–283 (1991) 21. Philippon, P.: Sur des hauteurs alternatives, II. Ann. Inst. Fourier, Grenoble 44(2), 1043–1065 (1994) 22. Philippon, P.: Sur des hauteurs alternatives, III. J. Math. Pures Appl. 74, 345–365 (1995) 23. Shafarevich, I.R.: Basic Algebraic Geometry. Springer, New York (1974) 24. Strassen,V.:AlgebraicComplexityTheory,HandbookofTheoreticalComputerScience,VolumeA: Algorithms and Complexity (A), pp. 633–672 25. Vogel, W.: Results on Bézout’s Theorem, Tata Institute of Fundamental Research. Springer, New York (1984)-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.relation.fp7245410-
dc.identifier.doi10.1007/s00200-012-0172-x-
dc.identifier.isi000311495400005-
item.accessRightsRestricted Access-
item.contributorGRIMSON, Rafael-
item.contributorHeintz, Joos-
item.contributorKUIJPERS, Bart-
item.validationecoom 2013-
item.fullcitationGRIMSON, Rafael; Heintz, Joos & KUIJPERS, Bart (2012) Evaluating geometric queries using few arithmetic operations. In: APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 23 (3-4), p. 179-193.-
item.fulltextWith Fulltext-
crisitem.journal.issn0938-1279-
crisitem.journal.eissn1432-0622-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
AAECC.pdf
  Restricted Access
Published version938.93 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.