Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14864
Title: Quantifier elimination for elementary geometry and elementary affine geometry
Authors: GRIMSON, Rafael 
KUIJPERS, Bart 
OTHMAN, Walied 
Issue Date: 2012
Source: Mathematical Logic Quarterly, 58 (6), p. 399-416
Abstract: We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β,≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination.
Notes: [Grimson, Rafael] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina. [Kuijpers, Bart] Hasselt Univ, Theoret Comp Sci Grp, B-3590 Diepenbeek, Belgium. [Kuijpers, Bart] Transnat Univ Limburg, B-3590 Diepenbeek, Belgium. [Othman, Walied] Univ Zurich, Inst Geog, CH-8057 Zurich, Switzerland.
Keywords: Logic; Databases; Geometry; Quantifier elimination
Document URI: http://hdl.handle.net/1942/14864
ISSN: 0942-5616
e-ISSN: 1521-3870
DOI: 10.1002/malq.201100095
ISI #: 000310973400006
Rights: Journal (Mathematical Logic Quarterly) copyright
Category: A1
Type: Journal Contribution
Validations: ecoom 2014
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
QE-Main.pdf
  Restricted Access
Peer-reviewed author version625.59 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.