Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWOLFS, Esther-
dc.contributor.authorSTRUYS, Tom-
dc.contributor.authorNotelaers, Tineke-
dc.contributor.authorRoberts, Scott J.-
dc.contributor.authorSohni, Abhishek-
dc.contributor.authorBormans, Guy-
dc.contributor.authorVan Laere, Koen-
dc.contributor.authorLuyten, Frank P.-
dc.contributor.authorGheysens, Olivier-
dc.contributor.authorLAMBRICHTS, Ivo-
dc.contributor.authorVerfaillie, Catherine M.-
dc.contributor.authorDeroose, Christophe M.-
dc.date.accessioned2013-04-08T06:33:16Z-
dc.date.available2013-04-08T06:33:16Z-
dc.date.issued2013-
dc.identifier.citationJOURNAL OF NUCLEAR MEDICINE, 54 (3), p. 447-454-
dc.identifier.issn0161-5505-
dc.identifier.urihttp://hdl.handle.net/1942/14982-
dc.description.abstractBecause of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as F-18-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with F-18-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). Methods: Mouse MSCs and rat MAPCs were used for F-18-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs pre-labeled with F-18-FDG, and stem cell biodistribution was investigated using small-animal PET. Results: The optimal incubation period for F-18-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%-40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by F-18-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of F-18-FDG from the cells. Conclusion: MSCs and MAPCs can be successfully labeled with F-18-FDG for molecular imaging purposes. The main cellular properties are not rigorously affected. TEM confirmed that the cells' ultrastructural properties are not influenced by F-18-FDG labeling. Small-animal PET studies confirmed the intracellular location of the tracer and the possibility of imaging injected prelabeled stem cell types in vivo. Therefore, direct labeling of MSCs and MAPCs with F-18-FDG is a suitable technique to noninvasively assess cell delivery and early retention with PET.-
dc.language.isoen-
dc.publisherSOC NUCLEAR MEDICINE INC-
dc.subject.otherRadiology, Nuclear Medicine & Medical Imaging; mesenchymal stem cell; multipotent adult progenitor cell; F-18-FDG; radiotoxicity; PET-
dc.subject.othermesenchymal stem cell; multipotent adult progenitor cell; F-18-FDG; radiotoxicity; PET-
dc.titleF-18-FDG Labeling of Mesenchymal Stem Cells and Multipotent Adult Progenitor Cells for PET Imaging: Effects on Ultrastructure and Differentiation Capacity-
dc.typeJournal Contribution-
dc.identifier.epage454-
dc.identifier.issue3-
dc.identifier.spage447-
dc.identifier.volume54-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Wolfs, Esther; Van Laere, Koen; Gheysens, Olivier; Deroose, Christophe M.] Katholieke Univ Leuven, Dept Imaging & Pathol, Div Nucl Med & Mol Imaging, Louvain, Belgium. [Struys, Tom; Lambrichts, Ivo] Univ Hasselt, Biomed Res Inst, Dept Funct Morphol, Lab Histol, Diepenbeek, Belgium. [Struys, Tom] Katholieke Univ Leuven, Dept Imaging & Pathol, Biomed NMR Unit, Louvain, Belgium. [Notelaers, Tineke; Sohni, Abhishek; Verfaillie, Catherine M.] Katholieke Univ Leuven, Dept Dev & Regenerat, Stem Cell Inst, Louvain, Belgium. [Roberts, Scott J.; Luyten, Frank P.] Katholieke Univ Leuven, Lab Skeletal Dev & Joint Disorders, Louvain, Belgium. [Bormans, Guy] Katholieke Univ Leuven, Lab Radiopharm, Louvain, Belgium.-
local.publisher.placeRESTON-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.2967/jnumed.112.108316-
dc.identifier.isi000315632500041-
item.fullcitationWOLFS, Esther; STRUYS, Tom; Notelaers, Tineke; Roberts, Scott J.; Sohni, Abhishek; Bormans, Guy; Van Laere, Koen; Luyten, Frank P.; Gheysens, Olivier; LAMBRICHTS, Ivo; Verfaillie, Catherine M. & Deroose, Christophe M. (2013) F-18-FDG Labeling of Mesenchymal Stem Cells and Multipotent Adult Progenitor Cells for PET Imaging: Effects on Ultrastructure and Differentiation Capacity. In: JOURNAL OF NUCLEAR MEDICINE, 54 (3), p. 447-454.-
item.validationecoom 2014-
item.contributorWOLFS, Esther-
item.contributorSTRUYS, Tom-
item.contributorNotelaers, Tineke-
item.contributorRoberts, Scott J.-
item.contributorSohni, Abhishek-
item.contributorBormans, Guy-
item.contributorVan Laere, Koen-
item.contributorLuyten, Frank P.-
item.contributorGheysens, Olivier-
item.contributorLAMBRICHTS, Ivo-
item.contributorVerfaillie, Catherine M.-
item.contributorDeroose, Christophe M.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn0161-5505-
crisitem.journal.eissn1535-5667-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

41
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

53
checked on May 8, 2024

Page view(s)

58
checked on Aug 31, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.