Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIZIN, Sebastien-
dc.description.abstractThis report provides an overview of the available LCA literature on OPV devices focusing on the cumulative energy demand and greenhouse gas emission factor.-
dc.description.sponsorshipINTERREG ORGANEXT-
dc.subject.otherOPV; Sustainability analysis; nanomaterials; LCA-
dc.titleSustainability analysis of nanotechnology-
dc.typeResearch Report-
dc.relation.references1. Kippelen, B. and J.-L. Bredas, Organic photovoltaics. Energy & Environmental Science, 2009. 2(3): p. 251-261. 2. Brabec, C.J., et al., Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials, 2010. 22(34): p. 3839-3856. 3. Tsoutsos, T., N. Frantzeskaki, and V. Gekas, Environmental impacts from the solar energy technologies. Energy Policy, 2005. 33(3): p. 289-296. 4. Dhingra, R., et al., Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking. Sustainability, 2010. 2(10): p. 3323-3338. 5. Ness, B., et al., Categorising tools for sustainability assessment. Ecological Economics, 2007. 60(3): p. 498-508. 6. Gasparatos, A. and A. Scolobig, Choosing the most appropriate sustainability assessment tool. Ecological Economics, 2012. 80(0): p. 1-7. 7. von Gleich, A., M. Steinfeldt, and U. Petschow, A suggested three-tiered approach to assessing the implications of nanotechnology and influencing its development. Journal of Cleaner Production, 2008. 16(8–9): p. 899-909. 8. Zimmermann, Y.-S., et al., Organic photovoltaics: Potential fate and effects in the environment. Environment International, 2012. 49(0): p. 128-140. 9. Strange, M., et al., Biodegradable polymer solar cells. Solar Energy Materials and Solar Cells, 2008. 92(7): p. 805-813. 10. The Royal Society & Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties. 2004, The Royal Society: London. p. 111. 11. Roes, A.L., et al., Ex-ante environmental and economic evaluation of polymer photovoltaics. Progress in Photovoltaics: Research and Applications, 2009. 17(6): p. 372-393. 12. Finnveden, G., et al., Recent developments in Life Cycle Assessment. Journal of Environmental Management, 2009. 91(1): p. 1-21. 13. Şengül, H., T.L. Theis, and S. Ghosh, Toward Sustainable Nanoproducts. Journal of Industrial Ecology, 2008. 12(3): p. 329-359. 14. Kim, H.C. and V. Fthenakis, Life Cycle Energy and Climate Change Implications of Nanotechnologies. Journal of Industrial Ecology, 2012: p. no-no. 15. Meyer, D.E., M.A. Curran, and M.A. Gonzalez, An Examination of Existing Data for the Industrial Manufacture and Use of Nanocomponents and Their Role in the Life Cycle Impact of Nanoproducts. Environmental Science & Technology, 2009. 43(5): p. 1256-1263. 16. García-Valverde, R., J.A. Cherni, and A. Urbina, Life cycle analysis of organic photovoltaic technologies. Progress in Photovoltaics: Research and Applications, 2010. 18(7): p. 535-558. 17. Hummelen, J.C., et al., Preparation and Characterization of Fulleroid and Methanofullerene Derivatives. The Journal of Organic Chemistry, 1995. 60(3): p. 532-538. 18. Zhan, L., et al., PEDOT: Cathode active material with high specific capacity in novel electrolyte system. Electrochimica Acta, 2008. 53(28): p. 8319-8323. 19. Krebs, F.C., Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 394-412. 20. Espinosa, N., et al., A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Solar Energy Materials and Solar Cells, 2011. 95(5): p. 1293-1302. 21. Espinosa, N., R. Garcia-Valverde, and F.C. Krebs, Life-cycle analysis of product integrated polymer solar cells. Energy & Environmental Science, 2011. 4(5): p. 1547-1557. 22. Espinosa, N., et al., Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing. Solar Energy Materials and Solar Cells, 2012. 97(0): p. 3-13. 23. European Commission, Critical raw materials for the EU: Report of the ad-hoc working group on defining critical raw materials. 2010: Brussels. p. 84. 24. Emmott, C.J.M., A. Urbina, and J. Nelson, Environmental and economic assessment of ITO-free electrodes for organic solar cells. Solar Energy Materials and Solar Cells, 2012. 97(0): p. 14-21. 25. Azzopardi, B., et al., Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy & Environmental Science, 2011. 4(10): p. 3741-3753. 26. Anctil, A., et al., Cumulative energy demand for small molecule and polymer photovoltaics. Progress in Photovoltaics: Research and Applications, 2012: p. n/a-n/a. 27. Anctil, A., et al., Material and Energy Intensity of Fullerene Production. Environmental Science & Technology, 2011. 45(6): p. 2353-2359. 28. Espinosa, N., et al., Solar cells with one-day energy payback for the factories of the future. Energy & Environmental Science, 2012. 5(1): p. 5117-5132. 29. Yue, D., et al., Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. Energy & Environmental Science, 2012. 5(11): p. 9163-9172.-
item.fulltextWith Fulltext-
item.contributorLIZIN, Sebastien-
item.fullcitationLIZIN, Sebastien (2013) Sustainability analysis of nanotechnology.-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Sustainability analysis of nanotechnology.pdf1.8 MBAdobe PDFView/Open
Show simple item record

Page view(s)

checked on Jul 1, 2022


checked on Jul 1, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.