Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15180
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFleischmann, Claudia-
dc.contributor.authorHoussa, Michel-
dc.contributor.authorMueller, Matthias-
dc.contributor.authorBeckhoff, Burkhard-
dc.contributor.authorBOYEN, Hans-Gerd-
dc.contributor.authorMEURIS, Marc-
dc.contributor.authorTemst, Kristiaan-
dc.contributor.authorVantomme, Andre-
dc.date.accessioned2013-06-05T07:45:43Z-
dc.date.available2013-06-05T07:45:43Z-
dc.date.issued2013-
dc.identifier.citationJOURNAL OF PHYSICAL CHEMISTRY C, 117 (15), p. 7451-7458-
dc.identifier.issn1932-7447-
dc.identifier.urihttp://hdl.handle.net/1942/15180-
dc.description.abstractWe present a fundamental study of the monolayer adsorption of sulfur on Ge(100) surfaces from aqueous (NH4)(2)S solution. This treatment shows promising perspectives for the passivation of high-mobility semiconductor surfaces and is therefore presently of great technological importance. The adsorption mechanisms as well as the adsorption geometry are thoroughly investigated at the atomic scale, by both experiment and theory, applying X-ray absorption spectroscopy and molecular dynamics simulations. Our findings indicate that sulfidation in solution results in the formation of Ge-S-Ge bridges along the [110] direction, with no indication for -SH surface groups. A-S-Ge bond length of 2.25 +/- 0.05 angstrom was deduced, which is affected by the chemical environment of the sulfur atoms, i.e., by residual surface oxides. Our study provides novel insights into the surface termination and atomic structure of (NH4)(2)S-treated Ge(100) surfaces and discusses possible differences from in situ sulfur adsorption methods such as H2S or S-2 exposure.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subject.otherChemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary-
dc.titleLiquid-Phase Adsorption of Sulfur on Germanium: Reaction Mechanism and Atomic Geometry-
dc.typeJournal Contribution-
dc.identifier.epage7458-
dc.identifier.issue15-
dc.identifier.spage7451-
dc.identifier.volume117-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesKatholieke Univ Leuven, Inst Kern & Stralingsfys, BE-3001 Louvain, Belgium. Katholieke Univ Leuven, Semicond Phys Lab, BE-3001 Louvain, Belgium. Phys Tech Bundesanstalt, D-10587 Berlin, Germany. Hasselt Univ, Inst Mat Res, BE-3590 Diepenbeek, Belgium. IMEC, BE-3001 Louvain, Belgium.-
local.publisher.placeWASHINGTON-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/jp306536n-
dc.identifier.isi000317950300006-
item.contributorFleischmann, Claudia-
item.contributorHoussa, Michel-
item.contributorMueller, Matthias-
item.contributorBeckhoff, Burkhard-
item.contributorBOYEN, Hans-Gerd-
item.contributorMEURIS, Marc-
item.contributorTemst, Kristiaan-
item.contributorVantomme, Andre-
item.fullcitationFleischmann, Claudia; Houssa, Michel; Mueller, Matthias; Beckhoff, Burkhard; BOYEN, Hans-Gerd; MEURIS, Marc; Temst, Kristiaan & Vantomme, Andre (2013) Liquid-Phase Adsorption of Sulfur on Germanium: Reaction Mechanism and Atomic Geometry. In: JOURNAL OF PHYSICAL CHEMISTRY C, 117 (15), p. 7451-7458.-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
item.validationecoom 2014-
crisitem.journal.issn1932-7447-
crisitem.journal.eissn1932-7455-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

4
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

7
checked on Aug 19, 2024

Page view(s)

56
checked on Sep 5, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.