Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIN, Dan-
dc.contributor.authorTilahun, Abel-
dc.contributor.authorAbrahantes, Jose Cortinas-
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorGohlmann, Hinrich W. H.-
dc.contributor.authorTALLOEN, Willem-
dc.contributor.authorBIJNENS, Luc-
dc.date.accessioned2013-08-20T14:49:24Z-
dc.date.available2013-08-20T14:49:24Z-
dc.date.issued2013-
dc.identifier.citationINTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 8 (1), p. 24-41-
dc.identifier.issn1748-5673-
dc.identifier.urihttp://hdl.handle.net/1942/15408-
dc.description.abstractIn recent years, a lot of attention is placed on the selection and evaluation of biomarkers in microarray experiments. Two sets of biomarkers are of importance, namely therapeutic and prognostic. The therapeutic biomarkers would give us information on the response of the genes to treatment in relation to the response of the clinical outcome to the same treatments, whereas the prognostic biomarkers enable us to predict the clinical outcome irrespective of treatments and other confounding factors. In this paper, we use different methods that allow for both linear and non-linear associations to select prognostic markers for depression, the response.-
dc.language.isoen-
dc.publisherINDERSCIENCE ENTERPRISES LTD-
dc.rights© 2013 Inderscience Enterprises Ltd.-
dc.subject.otherprognostics biomarkers; microarray experiments; linear associations; non-linear associations-
dc.subject.otherprognostics biomarkers; microarray experiments; linear associations; non-linear associations-
dc.titleComparison of methods for the selection of genomic biomarkers-
dc.typeJournal Contribution-
dc.identifier.epage41-
dc.identifier.issue1-
dc.identifier.spage24-
dc.identifier.volume8-
local.format.pages18-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Hasselt, I Biostat, B-3590 Diepenbeek, Belgium. Harvard Univ, Dept Biostat, Sch Publ Hlth, Boston, MA 02138 USA. European Food Safety Author, Sci Assessment Support Unit, I-43100 Parma, Italy. Katholieke Univ Leuven, B-3000 Louvain, Belgium. Janssen Pharmaceut Co Johnson & Johnson, B-2340 Beerse, Belgium.-
local.publisher.placeGENEVA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1504/IJDMB.2013.054691-
dc.identifier.isi000320772900002-
item.fulltextWith Fulltext-
item.contributorLIN, Dan-
item.contributorTilahun, Abel-
item.contributorAbrahantes, Jose Cortinas-
item.contributorSHKEDY, Ziv-
item.contributorMOLENBERGHS, Geert-
item.contributorGohlmann, Hinrich W. H.-
item.contributorTALLOEN, Willem-
item.contributorBIJNENS, Luc-
item.fullcitationLIN, Dan; Tilahun, Abel; Abrahantes, Jose Cortinas; SHKEDY, Ziv; MOLENBERGHS, Geert; Gohlmann, Hinrich W. H.; TALLOEN, Willem & BIJNENS, Luc (2013) Comparison of methods for the selection of genomic biomarkers. In: INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 8 (1), p. 24-41.-
item.accessRightsRestricted Access-
item.validationecoom 2014-
crisitem.journal.issn1748-5673-
crisitem.journal.eissn1748-5681-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
BiomarkerIJDMB.pdf
  Restricted Access
Peer-reviewed author version255.59 kBAdobe PDFView/Open    Request a copy
lin2013.pdf
  Restricted Access
Published version1.09 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.