Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15423
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDELLE, Lotta-
dc.contributor.authorLanche, Ruben-
dc.contributor.authorLaw, Jessica Ka-Yan-
dc.contributor.authorWeil, Maryam-
dc.contributor.authorXuan Thang, Vu-
dc.contributor.authorWAGNER, Patrick-
dc.contributor.authorIngebrandt, Sven-
dc.date.accessioned2013-08-21T09:43:57Z-
dc.date.available2013-08-21T09:43:57Z-
dc.date.issued2013-
dc.identifier.citationPHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 210 (5), p. 975-982-
dc.identifier.issn1862-6300-
dc.identifier.urihttp://hdl.handle.net/1942/15423-
dc.description.abstractIn the present study, reduced graphene oxide (rGO) is used as a biointerface for the investigation of cell adhesion of human embryonic kidney (HEK 293) cells. A fast, straightforward, and substrate-independent soft lithography approach known as Micromolding In Capillaries (MIMIC) was utilized to pattern graphene oxide (GO) arrays. Large-scale GO patterns with widths and distances in the micrometer range were obtained and were subsequently reduced to rGO via an environmentally-friendly procedure using L-ascorbic acid. Physical characterization of rGO patterns and cells was performed by optical microscopy, atomic force microscopy, and scanning electron microscopy. Impedance spectroscopy was used for the electrochemical characterization of GO before and after reduction. Cell adhesion and alignment was strong on the rGO micropatterns. In future assays, the rGO could combine two functions: cellular patterning and electrical interfacing of cells. HEK 293 cells aligning on rGO micro patterns (SEM image)-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subject.othercell adhesion; impedance spectroscopy; reduced graphene oxide; scanning electron microscopy-
dc.subject.otherMaterials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter-
dc.titleReduced graphene oxide micropatterns as an interface for adherent cells-
dc.typeJournal Contribution-
dc.identifier.epage982-
dc.identifier.issue5-
dc.identifier.spage975-
dc.identifier.volume210-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Appl Sci Kaiserslautern, Dept Informat & Microsyst Technol, D-66482 Zweibrucken, Germany. Hasselt Univ, Inst Mat Res, B-3590 Diepenbeek, Belgium.-
local.publisher.placeWEINHEIM-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pssa.201200864-
dc.identifier.isi000319151900024-
item.fulltextWith Fulltext-
item.contributorDELLE, Lotta-
item.contributorLanche, Ruben-
item.contributorLaw, Jessica Ka-Yan-
item.contributorWeil, Maryam-
item.contributorXuan Thang, Vu-
item.contributorWAGNER, Patrick-
item.contributorIngebrandt, Sven-
item.fullcitationDELLE, Lotta; Lanche, Ruben; Law, Jessica Ka-Yan; Weil, Maryam; Xuan Thang, Vu; WAGNER, Patrick & Ingebrandt, Sven (2013) Reduced graphene oxide micropatterns as an interface for adherent cells. In: PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 210 (5), p. 975-982.-
item.accessRightsRestricted Access-
item.validationecoom 2014-
crisitem.journal.issn1862-6300-
crisitem.journal.eissn1862-6319-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
delle 1.pdf
  Restricted Access
Published version779.42 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.