Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15463
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaucedo Marquez, CM-
dc.contributor.authorZhang, Xue-
dc.contributor.authorSwinnen, SP-
dc.contributor.authorMEESEN, Raf-
dc.contributor.authorWenderoth, N-
dc.date.accessioned2013-08-22T10:21:15Z-
dc.date.available2013-08-22T10:21:15Z-
dc.date.issued2013-
dc.identifier.citationFrontiers in Human Neuroscience, 7 (333), p. 1-12-
dc.identifier.issn1662-5161-
dc.identifier.urihttp://hdl.handle.net/1942/15463-
dc.description.abstractTranscranial direct current stimulation (tDCS) is a relatively new non-invasive brain stimulation technique that modulates neural processes. When applied to the human primary motor cortex (M1), tDCS has beneficial effects on motor skill learning and consolidation in healthy controls and in patients. However, it remains unclear whether tDCS improves motor learning in a general manner or whether these effects depend on which motor task is acquired. Here we compare whether the effect of tDCS differs when the same individual acquires (1) a Sequential Finger Tapping Task (SEQTAP) and (2) a Visual Isometric Pinch Force Task (FORCE). Both tasks have been shown to be sensitive to tDCS applied over M1, however, the underlying processes mediating learning and memory formation might benefit differently from anodal transcranial direct current stimulation (anodal-tDCS). Thirty healthy subjects were randomly assigned to an anodal-tDCS group or sham-group. Using a double-blind, sham-controlled cross-over design, tDCS was applied over M1 while subjects acquired each of the motor tasks over three consecutive days, with the order being randomized across subjects. We found that anodal-tDCS affected each task differently: the SEQTAP task benefited from anodal-tDCS during learning, whereas the FORCE task showed improvements only at retention. These findings suggest that anodal-tDCS applied over M1 appears to have a task-dependent effect on learning and memory formation.-
dc.description.sponsorshipFlanders Fund for Scientific Research (Project G.0758.10). Xue Zhang is a pre-doctoral fellow from the Flanders Fund for Scientific Research.-
dc.language.isoen-
dc.rightsCopyright: © 2013 Saucedo Marquez, Zhang, Swinnen, Meesen and Wenderoth. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.-
dc.subject.otherconsolidation, corticospinal excitability, motor learning, neuromodulation, primary motor cortex, tDCS-
dc.titleTask-specific effect of transcranial direct current stimulation on motor learning-
dc.typeJournal Contribution-
dc.identifier.epage12-
dc.identifier.issue333-
dc.identifier.spage1-
dc.identifier.volume7-
local.bibliographicCitation.jcatA1-
dc.relation.referencesAdeyemo, B. O., Simis, M., Macea, D. D., and Fregni, F. (2012). Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front. Psychiatry 3:88. doi:10.3389/fpsyt.2012.00088 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text American College of Sports Medicine (2006). Guidelines for exercise testing and prescription. Baltimore: Lippincott Williams and Wilkins. Ashe, J. (1997). Force and the motor cortex. Behav. Brain Res. 86, 1–15. doi:10.1016/S0166-4328(96)00145-3 CrossRef Full Text Boggio, P. S., Castro, L. O., Savagim, E. A., Braite, R., Cruz, V. C., Rocha, R. R., et al. (2006). Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci. Lett. 404, 232–236. doi:10.1016/j.neulet.2006.05.051 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Brawn, T. P., Fenn, K. M., Nusbaum, H. C., and Margoliash, D. (2010). Consolidating the effects of waking and sleep on motor-sequence learning. J. Neurosci. 30, 13977–13982. doi:10.1523/JNEUROSCI.3295-10.2010 CrossRef Full Text Cogiamanian, F., Marceglia, S., Ardolino, G., Barbieri, S., and Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 26, 242–249. doi:10.1111/j.1460-9568.2007.05633.x Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Conde, V., Vollmann, H., Sehm, B., Taubert, M., Villringer, A., and Ragert, P. (2012). Cortical thickness in primary sensorimotor cortex influences the effectiveness of paired associative stimulation. Neuroimage 60, 864–870. doi:10.1016/j.neuroimage.2012.01.052 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., and Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 207. doi:10.1016/j.brs.2009.03.005 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Datta, A., Truong, D., Minhas, P., Parra, L. C., and Bikson, M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front. Psychiatry 3:91. doi:10.3389/fpsyt.2012.00091 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Dayan, E., and Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron 72, 443–454. doi:10.1016/j.neuron.2011.10.008 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., et al. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75. doi:10.1016/j.bbr.2008.11.012 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Doyon, J., and Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167. doi:10.1016/j.conb.2005.03.004 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Floel, A., Nagorsen, U., Werhahn, K. J., Ravindran, S., Birbaumer, N., Knecht, S., et al. (2004). Influence of somatosensory input on motor function in patients with chronic stroke. Ann. Neurol. 56, 206–212. doi:10.1002/ana.20170 CrossRef Full Text Galea, J. M., and Celnik, P. (2009). Brain polarization enhances the formation and retention of motor memories. J. Neurophysiol. 102, 294–301. doi:10.1152/jn.00184.2009 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J., and Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb. Cortex 21, 1761–1770. doi:10.1093/cercor/bhq246 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Hazeltine, E., Grafton, S. T., and Ivry, R. (1997). Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 120, 123–140. doi:10.1093/brain/120.1.123 CrossRef Full Text Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., et al. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499. doi:10.1093/brain/awh369 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Kantak, S. S., Mummidisetty, C. K., and Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning – evidence for competition between implicit and explicit human motor memory systems. Eur. J. Neurosci. 36, 2710–2715. doi:10.1111/j.1460-9568.2012.08175.x Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., and Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158. doi:10.1038/377155a0 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Keisker, B., Hepp-Reymond, M. C., Blickenstorfer, A., Meyer, M., and Kollias, S. S. (2009). Differential force scaling of fine-graded power grip force in the sensorimotor network. Hum. Brain Mapp. 30, 2453–2465. doi:10.1002/hbm.20676 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Luft, A. R., and Buitrago, M. M. (2005). Stages of motor skill learning. Mol. Neurobiol. 32, 205–216. doi:10.1385/MN:32:3:205 CrossRef Full Text Madhavan, S., and Shah, B. (2012). Enhancing motor skill learning with transcranial direct current stimulation – a concise review with applications to stroke. Front. Psychiatry 3:66. doi:10.3389/fpsyt.2012.00066 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Miranda, P. C., Lomarev, M., and Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629. doi:10.1016/j.clinph.2006.04.009 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Moliadze, V., Antal, A., and Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin. Neurophysiol. 121, 2165–2171. doi:10.1016/j.clinph.2010.04.033 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Muellbacher, W., Facchini, S., Boroojerdi, B., and Hallett, M. (2000). Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin. Neurophysiol. 111, 344–349. doi:10.1016/S1388-2457(99)00243-6 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., et al. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97, 3109–3117. doi:10.1152/jn.01312.2006 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Nitsche, M. A., and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. (Lond.) 527(Pt 3), 633–639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., et al. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15, 619–626. doi:10.1162/089892903321662994 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. doi:10.1016/0028-3932(71)90067-4 CrossRef Full Text Palm, U., Keeser, D., Schiller, C., Fintescu, Z., Nitsche, M., Reisinger, E., et al. (2008). Skin lesions after treatment with transcranial direct current stimulation (tDCS). Brain Stimul. 1, 386–387. doi:10.1016/j.brs.2008.04.003 CrossRef Full Text Parazzini, M., Fiocchi, S., Rossi, E., Paglialonga, A., and Ravazzani, P. (2011). Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model. IEEE Trans. Biomed. Eng. 58, 1773–1780. doi:10.1109/TBME.2011.2116019 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Penhune, V. B., and Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 226, 579–591. doi:10.1016/j.bbr.2011.09.044 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Radman, T., Ramos, R. L., Brumberg, J. C., and Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2, 228. doi:10.1016/j.brs.2009.03.007 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Reis, J., and Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr. Opin. Neurol. 24, 590–596. doi:10.1097/WCO.0b013e32834c3db0 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U.S.A. 106, 1590–1595. doi:10.1073/pnas.0805413106 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Rickham, P. P. (1964). Human experimentation. Code of ethics of the world medical association. Declaration of Helsinki. Br. Med. J. 2, 177. doi:10.1136/bmj.2.5402.177 CrossRef Full Text Riedel, P., Kabisch, S., Ragert, P., and von, K. K. (2012). Contact dermatitis after transcranial direct current stimulation. Brain Stimul. 5, 432–434. doi:10.1016/j.brs.2011.09.001 CrossRef Full Text Robertson, E. M., Press, D. Z., and Pascual-Leone, A. (2005). Off-line learning and the primary motor cortex. J. Neurosci. 25, 6372–6378. doi:10.1523/JNEUROSCI.1851-05.2005 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Sadleir, R. J., Vannorsdall, T. D., Schretlen, D. J., and Gordon, B. (2010). Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage 51, 1310–1318. doi:10.1016/j.neuroimage.2010.03.052 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Sanes, J. N. (2000). Motor cortex rules for learning and memory. Curr. Biol. 10, R495–R497. doi:10.1016/S0960-9822(00)00557-1 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Sanes, J. N. (2003). Neocortical mechanisms in motor learning. Curr. Opin. Neurobiol. 13, 225–231. doi:10.1016/S0959-4388(03)00046-1 CrossRef Full Text Sanes, J. N., and Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23, 393–415. doi:10.1146/annurev.neuro.23.1.393 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Schambra, H. M., Abe, M., Luckenbaugh, D. A., Reis, J., Krakauer, J. W., and Cohen, L. G. (2011). Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J. Neurophysiol. 106, 652–661. doi:10.1152/jn.00210.2011 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., and Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49, 800–804. doi:10.1016/j.neuropsychologia.2011.02.009 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Sulzer, J. S., Chib, V. S., Hepp-Reymond, M. C., Kollias, S., and Gassert, R. (2011). BOLD correlations to force in precision grip: an event-related study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2342–2346. doi:10.1109/IEMBS.2011.6090655 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., et al. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. J. Neurophysiol. 104, 1134–1140. doi:10.1152/jn.00661.2009 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Truong, D. Q., Magerowski, G., Pascual-Leone, A., Alonso-Alonso, M., and Bikson, M. (2012). Finite Element study of skin and fat delineation in an obese subject for transcranial Direct Current Stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 6587–6590. doi:10.1109/EMBC.2012.6347504 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Ungerleider, L. G., Doyon, J., and Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem. 78, 553–564. doi:10.1006/nlme.2002.4091 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Vines, B. W., Nair, D. G., and Schlaug, G. (2006). Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport 17, 671–674. doi:10.1097/00001756-200604240-00023 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Vines, B. W., Nair, D., and Schlaug, G. (2008). Modulating activity in the motor cortex affects performance for the two hands differently depending upon which hemisphere is stimulated. Eur. J. Neurosci. 28, 1667–1673. doi:10.1111/j.1460-9568.2008.06459.x. Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Vollmann, H., Conde, V., Sewerin, S., Taubert, M., Sehm, B., Witte, O. W., et al. (2013). Anodal transcranial direct current stimulation (tDCS) over supplementary motor area (SMA) but not pre-SMA promotes short-term visuomotor learning. Brain Stimul. 6, 101–107. doi:10.1016/j.brs.2012.03.018 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., and Pascual-Leone, A. (2007). Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35, 1113–1124. doi:10.1016/j.neuroimage.2007.01.027 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Walker, M. P., Brakefield, T., Hobson, J. A., and Stickgold, R. (2003). Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620. doi:10.1038/nature01930 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L. G., and Hummel, F. C. (2013). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73, 10–15. doi:10.1002/ana.23761 Pubmed Abstract | Pubmed Full Text | CrossRef Full Text-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.3389/fnhum.2013.00333-
dc.identifier.isi000321196200001-
dc.identifier.urlhttp://www.ncbi.nlm.nih.gov/pubmed/23847505-
dc.identifier.urlhttp://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00333/abstract-
item.fullcitationSaucedo Marquez, CM; Zhang, Xue; Swinnen, SP; MEESEN, Raf & Wenderoth, N (2013) Task-specific effect of transcranial direct current stimulation on motor learning. In: Frontiers in Human Neuroscience, 7 (333), p. 1-12.-
item.accessRightsOpen Access-
item.contributorSaucedo Marquez, CM-
item.contributorZhang, Xue-
item.contributorSwinnen, SP-
item.contributorMEESEN, Raf-
item.contributorWenderoth, N-
item.fulltextWith Fulltext-
item.validationecoom 2015-
crisitem.journal.issn1662-5161-
crisitem.journal.eissn1662-5161-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Motor Learning tDCS fnhum-07-00333.pdfPublished version1.41 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

76
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

117
checked on Apr 14, 2024

Page view(s)

62
checked on Sep 7, 2022

Download(s)

118
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.