Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15493
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIZIN, Sebastien-
dc.contributor.authorVAN PASSEL, Steven-
dc.contributor.authorDE SCHEPPER, Ellen-
dc.contributor.authorMAES, Wouter-
dc.contributor.authorLUTSEN, Laurence-
dc.contributor.authorMANCA, Jean-
dc.contributor.authorVANDERZANDE, Dirk-
dc.date.accessioned2013-09-18T13:37:25Z-
dc.date.available2013-09-18T13:37:25Z-
dc.date.issued2013-
dc.identifier.citationEnergy & Environmental Science, 6 (11), p. 3136-3149-
dc.identifier.issn1754-5692-
dc.identifier.urihttp://hdl.handle.net/1942/15493-
dc.description.abstractThis paper reviews the available life cycle analysis (LCA) literature on organic photovoltaics (OPV). This branch of OPV research has focused on the environmental impact of single-junction bulk heterojunction polymer solar cells using a P3HT/PC60BM active layer blend processed on semi-industrial pilot lines in ambient surroundings. The environmental impact was found to be strongly decreasing through continuous innovation of the manufacturing procedures. The current top performing cell regarding environmental performance has a cumulative energy demand of 37.58 MJp/m² and an energy payback time in the order of months for cells having 2% efficiency, hereby rendering OPV cells one of the best performing PV technologies from environmental point of view. Nevertheless, we find that LCA literature is lagging behind on the main body of OPV literature due to the lack of readily available input data. Still, LCA research has led us to believe that in the quest for higher efficiencies, environmental sustainability is being disregarded on the materials’ side. Hence, we advise the scientific community to take the progress made on environmental sustainability aspects of OPV preparations into account not only because standard procedures put a bigger strain on the environment, but also because these methods may not be transferrable to an industrial process. By consequence, we recommend policy makers to subsidize research that bridges the gaps between fundamental materials research, stability, and scalability given that these constraints have to be fulfilled simultaneously if OPV is ever to be successful on the market. Additionally, environmental sustainability will have to keep on being monitored to steer future developments in the right direction.-
dc.description.sponsorshipINTERREG;FP7;-
dc.language.isoen-
dc.subject.otherEnvironmental Sustainability; Life Cycle Analysis; Organic Photovoltaics; Product Innovation; Process Innovation-
dc.titleLife cycle analyses of organic photovoltaics: A review-
dc.typeJournal Contribution-
dc.identifier.epage3149-
dc.identifier.issue11-
dc.identifier.spage3136-
dc.identifier.volume6-
local.bibliographicCitation.jcatA1-
dc.description.notesLizin, S (reprint author), Hasselt Univ, Ctr Environm Sci CMK, Agoralaan,Bldg D, B-3590 Diepenbeek, Belgium. E-mail Addresses:sebastien.lizin@uhasselt.be; steven.vanpassel@uhasselt.be; ellen.deschepper@uhasselt.be; wouter.maes@uhasselt.be; laurence.lutsen@uhasselt.be; jean.manca@uhasselt.be; dirk.vanderzande@uhasselt.be-
dc.relation.references[1] R.S. de Groot, M.A. Wilson, R.M.J. Boumans, A typology for the classification, description and valuation of ecosystem functions, goods and services, Ecological Economics, 41 (2002) 393-408. [2] R. Madlener, S. Stagl, Sustainability-guided promotion of renewable electricity generation, Ecological Economics, 53 (2005) 147-167. [3] European Commission, Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, in, Brussels, 2009, pp. 16-62. [4] T. Tsoutsos, N. Frantzeskaki, V. Gekas, Environmental impacts from the solar energy technologies, Energy Policy, 33 (2005) 289-296. [5] V.V. Tyagi, N.A.A. Rahim, N.A. Rahim, J.A.L. Selvaraj, Progress in solar PV technology: Research and achievement, Renewable and Sustainable Energy Reviews, 20 (2013) 443-461. [6] D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, M. Pfeiffer, Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends, Solar Energy Materials and Solar Cells, 79 (2003) 81-92. [7] C.J. Brabec, Organic photovoltaics: technology and market, Solar Energy Materials and Solar Cells, 83 (2004) 273-292. [8] E. Bundgaard, F.C. Krebs, Low band gap polymers for organic photovoltaics, Solar Energy Materials and Solar Cells, 91 (2007) 954-985. [9] J. Nelson, Polymer:fullerene bulk heterojunction solar cells, Materials Today, 14 (2011) 462-470. [10] G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nat Photon, 6 (2012) 153-161. [11] P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells, Progress in Photovoltaics: Research and Applications, 20 (2012) 377-415. [12] T.D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, F.C. Krebs, Business, market and intellectual property analysis of polymer solar cells, Solar Energy Materials and Solar Cells, 94 (2010) 1553-1571. [13] S. Lizin, S. Van Passel, E. De Schepper, L. Vranken, The future of organic photovoltaic solar cells as a direct power source for consumer electronics, Solar Energy Materials and Solar Cells, 103 (2012) 1-10. [14] N. Yeh, P. Yeh, Organic solar cells: Their developments and potentials, Renewable and Sustainable Energy Reviews, 21 (2013) 421-431. [15] S.B. Darling, F. You, The case for organic photovoltaics, RSC Advances, (2013), DOI: 10.1039/c3ra42989j [16] R. Dhingra, S. Naidu, G. Upreti, R. Sawhney, Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking, Sustainability, 2 (2010) 3323-3338. [17] S. Lizin, J. Leroy, C. Delvenne, M. Dijk, E. De Schepper, S. Van Passel, A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase, Renewable Energy, 57 (2013) 5-11. [18] J.M. Utterback, W.J. Abernathy, A dynamic model of process and product innovation, Omega, 3 (1975) 639-656. [19] F.C. Krebs, T. Tromholt, M. Jorgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing, Nanoscale, 2 (2010) 873-886. [20] F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrom, M.S. Pedersen, Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africa" initiative, Energy & Environmental Science, 3 (2010) 512-525. [21] F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration, Solar Energy Materials and Solar Cells, 93 (2009) 422-441. [22] F.C. Krebs, J. Fyenbo, D.M. Tanenbaum, S.A. Gevorgyan, R. Andriessen, B. van Remoortere, Y. Galagan, M. Jorgensen, The OE-A OPV demonstrator anno domini 2011, Energy & Environmental Science, 4 (2011) 4116-4123. [23] Heliatek, EU Commissioner very impressed by her visit to Heliatek, Available from: http://www.heliatek.com/newscenter/english-eu-commissioner-very-impressed-by-her-visit-to-heliatek/?lang=en#, 2012 (accessed 01.03.2013). [24] F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials and Solar Cells, 93 (2009) 394-412. [25] B. Ness, E. Urbel-Piirsalu, S. Anderberg, L. Olsson, Categorising tools for sustainability assessment, Ecological Economics, 60 (2007) 498-508. [26] A. Evans, V. Strezov, T.J. Evans, Assessment of sustainability indicators for renewable energy technologies, Renewable and Sustainable Energy Reviews, 13 (2009) 1082-1088. [27] J. Peng, L. Lu, H. Yang, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems, Renewable and Sustainable Energy Reviews, 19 (2013) 255-274. [28] M. Arena, G. Azzone, A. Conte, A streamlined LCA framework to support early decision making in vehicle development, Journal of Cleaner Production, 41 (2013) 105-113. [29] M. Lenzen, Errors in Conventional and Input-Output—based Life—Cycle Inventories, Journal of Industrial Ecology, 4 (2000) 127-148. [30] R.H. Crawford, Validation of a hybrid life-cycle inventory analysis method, Journal of Environmental Management, 88 (2008) 496-506. [31] European Environmental Agency, Energy and environment, Copenhagen, 2008, p.99. [32] M.A.J. Huijbregts, L.J.A. Rombouts, S. Hellweg, R. Frischknecht, A.J. Hendriks, D. van de Meent, A.M.J. Ragas, L. Reijnders, J. Struijs, Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products?, Environmental Science & Technology, 40 (2006) 641-648. [33] J. Jesson, L. Matheson, F.M. Lacey, Doing Your Literature Review: Traditional and Systematic Techniques, SAGE Publications, 2011. [34] T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: A review, Energy & Environmental Science, 2 (2009) 347-363. [35] International standards organization, Environmental management – life cycle assessment – principles and framework, in: ISO 14040, 1997. [36] International standards organization, Environmental management – life cycle assessment – goal and scope definition and inventory analysis, in: ISO 14041, 1998. [37] International standards organization, Environmental management – life cycle assessment – life cycle impact assessment, in: ISO 14042, 2000. [38] international standards organization, Environmental management – life cycle assessment – life cycle interpretation, in: ISO 14043, 2000. [39] V. Fthenakis, R. Frischknecht, M. Raugei, H.C. Kim, E. Alsema, M. Held, M. de Wild-Scholten, Methodology Guidelines on Life Cycle Assessmentof Photovoltaic Electricity, International Energy Agency Photovoltaic Power systems Programme, 2011. [40] M. Jørgensen, J.E. Carlé, R.R. Søndergaard, M. Lauritzen, N.A. Dagnæs-Hansen, S.L. Byskov, T.R. Andersen, T.T. Larsen-Olsen, A.P.L. Böttiger, B. Andreasen, L. Fu, L. Zuo, Y. Liu, E. Bundgaard, X. Zhan, H. Chen, F.C. Krebs, The state of organic solar cells—A meta analysis, Solar Energy Materials and Solar Cells, (2013), DOI: http://dx.doi.org/10.1016/j.solmat.2013.05.034 [41] G. Finnveden, M.Z. Hauschild, T. Ekvall, J. Guinée, R. Heijungs, S. Hellweg, A. Koehler, D. Pennington, S. Suh, Recent developments in Life Cycle Assessment, Journal of Environmental Management, 91 (2009) 1-21. [42] M. Thomassen, R. Dalgaard, R. Heijungs, I. Boer, Attributional and consequential LCA of milk production, Int J Life Cycle Assess, 13 (2008) 339-349. [43] T. Ekvall, G. Finnveden, Allocation in ISO 14041—a critical review, Journal of Cleaner Production, 9 (2001) 197-208. [44] Y. Sun, G.C. Welch, W.L. Leong, C.J. Takacs, G.C. Bazan, A.J. Heeger, Solution-processed small-molecule solar cells with 6.7% efficiency, Nature Materials, 11 (2012) 44-48. [45] A. Mishra, P. Bäuerle, Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology, Angewandte Chemie International Edition, 51 (2012) 2020-2067. [46] J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, Y. Chen, Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit, Journal of the American Chemical Society, 135 (2013) 8484-8487. [47] Y. Lin, Y. Li, X. Zhan, Small molecule semiconductors for high-efficiency organic photovoltaics, Chemical Society Reviews, 41 (2012) 4245-4272. [48] C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, W. Chen, Role of tungsten oxide in inverted polymer solar cells, Applied Physics Letters, 94 (2009) 043311. [49] W. Cai, X. Gong, Y. Cao, Polymer solar cells: Recent development and possible routes for improvement in the performance, Solar Energy Materials and Solar Cells, 94 (2010) 114-127. [50] J.-C. Wang, W.-T. Weng, M.-Y. Tsai, M.-K. Lee, S.-F. Horng, T.-P. Perng, C.-C. Kei, C.-C. Yu, H.-F. Meng, Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer, Journal of Materials Chemistry, 20 (2010) 862-866. [51] F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y. Wang, Recent development of the inverted configuration organic solar cells, Solar Energy Materials and Solar Cells, 95 (2011) 1785-1799. [52] M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of Polymer Solar Cells, Advanced Materials, 24 (2012) 580-612. [53] European Photovoltaic Technology Platform, A Strategic Research Agenda for Photovoltaic Solar Energy Technology, 2007, p.76. [54] C.H. Peters, I.T. Sachs-Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc, M.D. McGehee, High Efficiency Polymer Solar Cells with Long Operating Lifetimes, Advanced Energy Materials, 1 (2011) 491-494. [55] A. Anctil, C.W. Babbitt, R.P. Raffaelle, B.J. Landi, Material and Energy Intensity of Fullerene Production, Environmental Science & Technology, 45 (2011) 2353-2359. [56] R. García-Valverde, J.A. Cherni, A. Urbina, Life cycle analysis of organic photovoltaic technologies, Progress in Photovoltaics: Research and Applications, 18 (2010) 535-558. [57] A.L. Roes, E.A. Alsema, K. Blok, M.K. Patel, Ex-ante environmental and economic evaluation of polymer photovoltaics, Progress in Photovoltaics: Research and Applications, 17 (2009) 372-393. [58] D. Yue, P. Khatav, F. You, S.B. Darling, Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics, Energy & Environmental Science, 5 (2012) 9163-9172. [59] N. Espinosa, M. Hosel, D. Angmo, F.C. Krebs, Solar cells with one-day energy payback for the factories of the future, Energy & Environmental Science, 5 (2012) 5117-5132. [60] N. Espinosa, R. García-Valverde, A. Urbina, F.C. Krebs, A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions, Solar Energy Materials and Solar Cells, 95 (2011) 1293-1302. [61] C.J.M. Emmott, A. Urbina, J. Nelson, Environmental and economic assessment of ITO-free electrodes for organic solar cells, Solar Energy Materials and Solar Cells, 97 (2012) 14-21. [62] N. Espinosa, R. García-Valverde, A. Urbina, F. Lenzmann, M. Manceau, D. Angmo, F.C. Krebs, Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing, Solar Energy Materials and Solar Cells, 97 (2012) 3-13. [63] European Commission, Critical raw materials for the EU: Report of the ad-hoc working group on defining critical raw materials, Brussels, 2010, p.84. [64] A. Anctil, C.W. Babbitt, R.P. Raffaelle, B.J. Landi, Cumulative energy demand for small molecule and polymer photovoltaics, Progress in Photovoltaics: Research and Applications, (2012), DOI: 10.1002/pip.2226 [65] N. Espinosa, F.O. Lenzmann, S. Ryley, D. Angmo, M. Hosel, R.R. Søndergaard, D. Huss, S. Dafinger, S. Gritsch, J.M. Kroon, M. Jorgensen, F.C. Krebs, OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools, Journal of Materials Chemistry A, 1 (2013) 7037-7049. [66] Y. He, H.-Y. Chen, J. Hou, Y. Li, Indene−C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells, Journal of the American Chemical Society, 132 (2010) 1377-1382. [67] G. Zhao, Y. He, Y. Li, 6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization, Advanced Materials, 22 (2010) 4355-4358. [68] X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, Y. Li, High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive, Energy & Environmental Science, 5 (2012) 7943-7949. [69] T.P. Osedach, T.L. Andrew, V. Bulovic, Effect of synthetic accessibility on the commercial viability of organic photovoltaics, Energy & Environmental Science, 6 (2013) 711-718. [70] M. Kaltenbrunner, M.S. White, E.D. Głowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility, Nat Commun, (2012), DOI: 10.1038/ncomms1772. [71] R. Søndergaard, M. Helgesen, M. Jørgensen, F.C. Krebs, Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode, Advanced Energy Materials, 1 (2011) 68-71. [72] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 42), Progress in Photovoltaics: Research and Applications, 21 (2013) 827-837. [73] NREL, Best research-cell efficiencies, Available from: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2013 (accessed 03.08.2013). [74] P. Sonar, J.P.F. Lim, K.L. Chan, Organic non-fullerene acceptors for organic photovoltaics, Energy & Environmental Science, 4 (2011) 1558-1574. [75] A. Facchetti, Polymer donor–polymer acceptor (all-polymer) solar cells, Materials Today, 16 (2013) 123-132. [76] D. Qian, W. Ma, Z. Li, X. Guo, S. Zhang, L. Ye, H. Ade, Z.a. Tan, J. Hou, Molecular Design toward Efficient Polymer Solar Cells with High Polymer Content, Journal of the American Chemical Society, 135 (2013) 8464-8467. [77] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat Photon, 3 (2009) 649-653. [78] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Advanced Materials, 22 (2010) E135-E138. [79] H. Zhong, Z. Li, F. Deledalle, E.C. Fregoso, M. Shahid, Z. Fei, C.B. Nielsen, N. Yaacobi-Gross, S. Rossbauer, T.D. Anthopoulos, J.R. Durrant, M. Heeney, Fused Dithienogermolodithiophene Low Band Gap Polymers for High-Performance Organic Solar Cells without Processing Additives, Journal of the American Chemical Society, 135 (2013) 2040-2043. [80] D.J. Burke, D.J. Lipomi, Green chemistry for organic solar cells, Energy & Environmental Science, (2013), DOI: 10.1039/C3EE41096J [81] T.R. Andersen, T.T. Larsen-Olsen, B. Andreasen, A.P.L. Böttiger, J.E. Carlé, M. Helgesen, E. Bundgaard, K. Norrman, J.W. Andreasen, M. Jørgensen, F.C. Krebs, Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods, ACS Nano, 5 (2011) 4188-4196. [82] M. Strange, D. Plackett, M. Kaasgaard, F.C. Krebs, Biodegradable polymer solar cells, Solar Energy Materials and Solar Cells, 92 (2008) 805-813. [83] Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.-C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen, Recyclable organic solar cells on cellulose nanocrystal substrates, Sci. Rep., 3 (2013), DOI: http://dx.doi.org/10.1038/srep01536 [84] L. Reijnders, Design issues for improved environmental performance of dye-sensitized and organic nanoparticulate solar cells, Journal of Cleaner Production, 18 (2010) 307-312. [85] H.C. Kim, V. Fthenakis, Life Cycle Energy and Climate Change Implications of Nanotechnologies, Journal of Industrial Ecology, (2012), DOI: 10.1111/j.1530-9290.2012.00538.x [86] Y.-S. Zimmermann, A. Schäffer, C. Hugi, K. Fent, P.F.X. Corvini, M. Lenz, Organic photovoltaics: Potential fate and effects in the environment, Environment International, 49 (2012) 128-140.-
local.type.refereedRefereed-
local.type.specifiedReview-
dc.identifier.doi10.1039/C3EE42653J-
dc.identifier.isi000325946400002-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2014-
item.contributorLIZIN, Sebastien-
item.contributorVAN PASSEL, Steven-
item.contributorDE SCHEPPER, Ellen-
item.contributorMAES, Wouter-
item.contributorLUTSEN, Laurence-
item.contributorMANCA, Jean-
item.contributorVANDERZANDE, Dirk-
item.fullcitationLIZIN, Sebastien; VAN PASSEL, Steven; DE SCHEPPER, Ellen; MAES, Wouter; LUTSEN, Laurence; MANCA, Jean & VANDERZANDE, Dirk (2013) Life cycle analyses of organic photovoltaics: A review. In: Energy & Environmental Science, 6 (11), p. 3136-3149.-
crisitem.journal.issn1754-5692-
crisitem.journal.eissn1754-5706-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
life.pdf
  Restricted Access
415.45 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

129
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

160
checked on Mar 22, 2024

Page view(s)

190
checked on Jun 13, 2022

Download(s)

174
checked on Jun 13, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.