Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBRIJDER, Robert-
dc.contributor.authorHoogeboom, Hendrik Jan-
dc.contributor.authorTraldi, Lorenzo-
dc.date.accessioned2013-09-20T10:44:29Z-
dc.date.available2013-09-20T10:44:29Z-
dc.date.issued2013-
dc.identifier.citationELECTRONIC JOURNAL OF COMBINATORICS, 20 (3)-
dc.identifier.issn1077-8926-
dc.identifier.urihttp://hdl.handle.net/1942/15500-
dc.description.abstractIf G is a looped graph, then its adjacency matrix represents a binary matroid MA(G) on V (G). MA(G) may be obtained from the delta-matroid represented by the adjacency matrix of G, but MA(G) is less sensitive to the structure of G. Jaeger proved that every binary matroid is MA(G) for some G [Ann. Discrete Math. 17 (1983), 371-376]. The relationship between the matroidal structure of MA(G) and the graphical structure of G has many interesting features. For instance, the matroid minors MA(G) − v and MA(G)/v are both of the form MA(G′ − v) where G′ may be obtained from G using local complementation. In addition, matroidal considerations lead to a principal vertex tripartition, distinct from the principal edge tripartition of Rosenstiehl and Read [Ann. Discrete Math. 3 (1978), 195-226]. Several of these results are given two very different proofs, the first involving linear algebra and the second involving set systems or -matroids. Also, the Tutte polynomials of the adjacency matroids of G and its full subgraphs are closely connected to the interlace polynomial of Arratia, Bollob´as and Sorkin [Combinatorica 24 (2004), 567-584].-
dc.language.isoen-
dc.subject.otheradjacency; delta-matroid; interlace polynomial; local complement; matroid; minor; Tutte polynomial-
dc.titleThe adjacency matroid of a graph-
dc.typeJournal Contribution-
dc.identifier.issue3-
dc.identifier.volume20-
local.format.pages38-
local.bibliographicCitation.jcatA1-
dc.description.notesBrijder, R (reprint author), Hasselt Univ, Diepenbeek, Belgium. robert.brijder@uhasselt.be; h.j.hoogeboom@cs.leidenuniv.nl; traldil@lafayette.edu-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.isi000323793600002-
dc.identifier.urlhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p27-
item.contributorBRIJDER, Robert-
item.contributorHoogeboom, Hendrik Jan-
item.contributorTraldi, Lorenzo-
item.fullcitationBRIJDER, Robert; Hoogeboom, Hendrik Jan & Traldi, Lorenzo (2013) The adjacency matroid of a graph. In: ELECTRONIC JOURNAL OF COMBINATORICS, 20 (3).-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.validationecoom 2014-
crisitem.journal.issn1077-8926-
crisitem.journal.eissn1077-8926-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1107.5493v6.pdf398.04 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.