Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1564
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDUMORTIER, Freddy-
dc.contributor.authorIBANEZ MESA, Santiago-
dc.contributor.authorKobubu, H.-
dc.date.accessioned2007-06-01T11:24:30Z-
dc.date.available2007-06-01T11:24:30Z-
dc.date.issued2006-
dc.identifier.citationNONLINEARITY, 19(2). p. 305-328-
dc.identifier.issn0951-7715-
dc.identifier.urihttp://hdl.handle.net/1942/1564-
dc.description.abstractThe cocoon bifurcation is a set of rich bifurcation phenomena numerically observed by Lau (1992 Int. J. Bifurc. Chaos 2 543-58) in the Michelson system, a three-dimensional ODE system describing travelling waves of the Kuramoto-Sivashinsky equation. In this paper, we present an organizing centre of the principal part of the cocoon bifurcation in more general terms in the setting of reversible vector fields on R-3. We prove that in a generic unfolding of an organizing centre called the cusp-transverse heteroclinic chain, there is a cascade of heteroclinic bifurcations with an increasing length close to the organizing Centre, which resembles the principal part of the cocoon bifurcation. We also study a heteroclinic cycle called the reversible Bykov cycle. Such a cycle is believed to occur in the Michelson system, as well as in a model equation of a Josephson Junction (van den Berg et al 2003 Nonlinearity 16 707-17). We conjecture that a reversible Bykov cycle is, in its unfolding, an accumulation point of a sequence of cusp-transverse heteroclinic chains. As a first result in this direction, we show that a reversible Bykov cycle is an accumulation point of reversible generic saddle-node bifurcations of periodic orbits, the main ingredient of the cusp-transverse heteroclinic chain.-
dc.language.isoen-
dc.publisherInstitute Of Physics-
dc.subject.otherKURAMOTO-SIVASHINSKY EQUATION; NILPOTENT SINGULARITY; STEADY SOLUTIONS;; SADDLE-FOCUS; CODIMENSION-3; ORBITS; WAVES; R-3-
dc.titleCocoon bifurcation in three-dimensional reversible vector fields-
dc.typeJournal Contribution-
dc.identifier.epage328-
dc.identifier.issue2-
dc.identifier.spage305-
dc.identifier.volume19-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1088/0951-7715/19/2/004-
dc.identifier.isi000235461400004-
item.contributorDUMORTIER, Freddy-
item.contributorIBANEZ MESA, Santiago-
item.contributorKobubu, H.-
item.fullcitationDUMORTIER, Freddy; IBANEZ MESA, Santiago & Kobubu, H. (2006) Cocoon bifurcation in three-dimensional reversible vector fields. In: NONLINEARITY, 19(2). p. 305-328.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
item.validationecoom 2007-
crisitem.journal.issn0951-7715-
crisitem.journal.eissn1361-6544-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.