Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15848
Title: Configurations of limit cycles in Lienard equations
Authors: Coll, B.
DUMORTIER, Freddy 
Prohens, R.
Issue Date: 2013
Source: JOURNAL OF DIFFERENTIAL EQUATIONS, 255 (11), p. 4169-4184
Abstract: We show that every finite configuration of disjoint simple closed curves in the plane is topologically realizable as the set of limit cy-cles of a polynomial Liénard equation.The related vector field X is Morse–Smale. Moreover it has the minimum numberof singulari-ties required fo rrealizing the configuration in a Liénardequation. We provide an explicit upper bound on the degree of X, which is lower than the results obtained before, obtained in the context of general polynomial vector fields. ©2013ElsevierInc. All rights reserved.
Notes: Prohens, R (reprint author), Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain. tomeu.coll@uib.cat; freddy.dumortier@uhasselt.be; rafel.prohens@uib.cat
Keywords: Planar vector field; Lienard equation; Limit cycles configuration; Morse polynomial function
Document URI: http://hdl.handle.net/1942/15848
ISSN: 0022-0396
e-ISSN: 1090-2732
DOI: 10.1016/j.jde.2013.08.004
ISI #: 000324960100018
Category: A1
Type: Journal Contribution
Validations: ecoom 2014
Appears in Collections:Research publications

Show full item record

SCOPUSTM   
Citations

7
checked on Sep 7, 2020

WEB OF SCIENCETM
Citations

6
checked on May 21, 2022

Page view(s)

40
checked on May 27, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.