Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15943
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRoding, Magnus-
dc.contributor.authorDeschout, Hendrik-
dc.contributor.authorMartens, Thomas-
dc.contributor.authorNOTELAERS, Kristof-
dc.contributor.authorHofkens, Johan-
dc.contributor.authorAMELOOT, Marcel-
dc.contributor.authorBraeckmans, Kevin-
dc.contributor.authorSarkka, Aila-
dc.contributor.authorRudemo, Mats-
dc.date.accessioned2013-11-05T14:49:23Z-
dc.date.available2013-11-05T14:49:23Z-
dc.date.issued2013-
dc.identifier.citationMICROSCOPY RESEARCH AND TECHNIQUE, 76 (10), p. 997-1006-
dc.identifier.issn1059-910X-
dc.identifier.urihttp://hdl.handle.net/1942/15943-
dc.description.abstractOne of the fundamental problems in the analysis of single particle tracking data is the detection of individual particle positions from microscopy images. Distinguishing true particles from noise with a minimum of false positives and false negatives is an important step that will have substantial impact on all further analysis of the data. A common approach is to obtain a plausible set of particles from a larger set of candidate particles by filtering using manually selected threshold values for intensity, size, shape, and other parameters describing a particle. This introduces subjectivity into the analysis and hinders reproducibility. In this paper, we introduce a method for automatic selection of these threshold values based on maximizing temporal correlations in particle count time series. We use Markov Chain Monte Carlo to find the threshold values corresponding to the maximum correlation, and we study several experimental data sets to assess the performance of the method in practice by comparing manually selected threshold values from several independent experts with automatically selected threshold values. We conclude that the method produces useful results, reducing subjectivity and the need for manual intervention, a great benefit being its easy integratability into many already existing particle detection algorithms. Microsc. Res. Tech., 76:997-1006, 2013. (c) 2013 Wiley Periodicals, Inc.-
dc.language.isoen-
dc.titleAutomatic Particle Detection in Microscopy Using Temporal Correlations-
dc.typeJournal Contribution-
dc.identifier.epage1006-
dc.identifier.issue10-
dc.identifier.spage997-
dc.identifier.volume76-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/jemt.22260-
dc.identifier.isi000325009900004-
item.validationecoom 2014-
item.accessRightsRestricted Access-
item.fullcitationRoding, Magnus; Deschout, Hendrik; Martens, Thomas; NOTELAERS, Kristof; Hofkens, Johan; AMELOOT, Marcel; Braeckmans, Kevin; Sarkka, Aila & Rudemo, Mats (2013) Automatic Particle Detection in Microscopy Using Temporal Correlations. In: MICROSCOPY RESEARCH AND TECHNIQUE, 76 (10), p. 997-1006.-
item.fulltextWith Fulltext-
item.contributorRoding, Magnus-
item.contributorDeschout, Hendrik-
item.contributorMartens, Thomas-
item.contributorNOTELAERS, Kristof-
item.contributorHofkens, Johan-
item.contributorAMELOOT, Marcel-
item.contributorBraeckmans, Kevin-
item.contributorSarkka, Aila-
item.contributorRudemo, Mats-
crisitem.journal.issn1059-910X-
crisitem.journal.eissn1097-0029-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
roding 1.pdf
  Restricted Access
473.13 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.