Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSTEEN REDEKER, Erik-
dc.contributor.authorTA, Duy Tien-
dc.contributor.authorCORTENS, David-
dc.contributor.authorBILLEN, Brecht-
dc.contributor.authorGUEDENS, Wanda-
dc.contributor.authorADRIAENSENS, Peter-
dc.date.accessioned2014-01-10T09:35:39Z-
dc.date.available2014-01-10T09:35:39Z-
dc.date.issued2013-
dc.identifier.citationBIOCONJUGATE CHEMISTRY, 24 (11), p. 1761-1777-
dc.identifier.issn1043-1802-
dc.identifier.urihttp://hdl.handle.net/1942/16116-
dc.description.abstractMuch effort has been put into the optimization of the functional activity of proteins. For biosensors this protein functional optimization will increase the biosensor's sensitivity and/or selectivity. However, the strategy chosen for the immobilization of the proteins to the sensor surface might be equally important for the development of sensor surfaces that are optimally biologically active. Several studies published in recent years show that the oriented immobilization of the bioactive molecules improves the sensor's properties. In this review, we discuss the state of the art of the different protein immobilization strategies that are commonly used today with a special focus on biosensor applications. These strategies include nonspecific immobilization techniques either by physical adsorption, by covalent coupling, or by specific immobilization via site-specifically introduced tags or bio-orthogonal chemistry. The different tags and bio-orthogonal chemistry available and the techniques to site-specifically introduce these groups in proteins are also discussed.-
dc.language.isoen-
dc.subject.otherUNNATURAL AMINO-ACIDS; SITE-SPECIFIC INCORPORATION; MOLECULES IN-VIVO; AZIDE-ALKYNE CYCLOADDITIONS; SORTASE-MEDIATED LIGATION; SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; GENETIC-CODE; SURFACE IMMOBILIZATION; O-6-ALKYLGUANINE-DNA ALKYLTRANSFERASE-
dc.titleProtein Engineering For Directed Immobilization-
dc.typeJournal Contribution-
dc.identifier.epage1777-
dc.identifier.issue11-
dc.identifier.spage1761-
dc.identifier.volume24-
local.bibliographicCitation.jcatA1-
dc.description.notesRedeker, ES (reprint author), Hasselt Univ, Inst Mat Res IMO, Biomol Design Grp, Div Chem, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium, erik.steenredeker@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/bc4002823-
dc.identifier.isi000327413100001-
item.fullcitationSTEEN REDEKER, Erik; TA, Duy Tien; CORTENS, David; BILLEN, Brecht; GUEDENS, Wanda & ADRIAENSENS, Peter (2013) Protein Engineering For Directed Immobilization. In: BIOCONJUGATE CHEMISTRY, 24 (11), p. 1761-1777.-
item.fulltextWith Fulltext-
item.validationecoom 2014-
item.contributorSTEEN REDEKER, Erik-
item.contributorTA, Duy Tien-
item.contributorCORTENS, David-
item.contributorBILLEN, Brecht-
item.contributorGUEDENS, Wanda-
item.contributorADRIAENSENS, Peter-
item.accessRightsRestricted Access-
crisitem.journal.issn1043-1802-
crisitem.journal.eissn1520-4812-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
protein.pdf
  Restricted Access
548.08 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

103
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

151
checked on May 8, 2024

Page view(s)

60
checked on Sep 6, 2022

Download(s)

46
checked on Sep 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.