Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16202
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMARKOV, Krassimir-
dc.contributor.authorVANHOOF, Koen-
dc.contributor.authorMITOV, Iliya-
dc.contributor.authorDEPAIRE, Benoit-
dc.contributor.authorIVANOVA, Krassimira-
dc.contributor.authorVelychko, Vitalii-
dc.contributor.authorGladun, Victor-
dc.date.accessioned2014-01-29T14:51:11Z-
dc.date.available2014-01-29T14:51:11Z-
dc.date.issued2013-
dc.identifier.citationDiagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems, p. 156-184-
dc.identifier.isbn978 1-4666-1900-5-
dc.identifier.urihttp://hdl.handle.net/1942/16202-
dc.description.abstractThe Multi-layer Pyramidal Growing Networks (MPGN) are memory structures based on multidimensional numbered information spaces (Markov, 2004), which permit us to create association links (bonds), hierarchically systematizing, and classification the information simultaneously with the input of it into memory. This approach is a successor of the main ideas of Growing Pyramidal Networks (Gladun, 2003), such as hierarchical structuring of memory that allows reflecting the structure of composing instances and gender-species bonds naturally, convenient for performing different operations of associative search. The recognition is based on reduced search in the multi-dimensional information space hierarchies. In this chapter, the authors show the advantages of using the growing numbered memory structuring via MPGN in the field of class association rule mining. The proposed approach was implemented in realization of association rules classifiers and has shown reliable results.-
dc.language.isoen-
dc.publisherIGI Global-
dc.titleIntelligent Data Processing Based on Multi-Dimensional Numbered Memory Structures-
dc.typeBook Section-
dc.identifier.epage184-
dc.identifier.spage156-
local.bibliographicCitation.jcatB2-
local.publisher.placeUSA-
local.type.refereedRefereed-
local.type.specifiedBook Section-
local.identifier.vabbc:vabb:344230-
dc.identifier.doi10.4018/978-1-4666-1900-5.ch007-
local.bibliographicCitation.btitleDiagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems-
item.fulltextNo Fulltext-
item.validationvabb 2017-
item.contributorMARKOV, Krassimir-
item.contributorIVANOVA, Krassimira-
item.contributorVANHOOF, Koen-
item.contributorDEPAIRE, Benoit-
item.contributorMITOV, Iliya-
item.contributorVelychko, Vitalii-
item.contributorGladun, Victor-
item.fullcitationMARKOV, Krassimir; VANHOOF, Koen; MITOV, Iliya; DEPAIRE, Benoit; IVANOVA, Krassimira; Velychko, Vitalii & Gladun, Victor (2013) Intelligent Data Processing Based on Multi-Dimensional Numbered Memory Structures. In: Diagnostic Test Approaches to Machine Learning and Commonsense Reasoning Systems, p. 156-184.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

SCOPUSTM   
Citations

4
checked on Sep 3, 2020

Page view(s)

62
checked on Jul 1, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.