Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16269
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMITOV, Iliya-
dc.contributor.authorDEPAIRE, Benoit-
dc.contributor.authorIVANOVA, Krassimira-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2014-02-04T10:08:51Z-
dc.date.available2014-02-04T10:08:51Z-
dc.date.issued2013-
dc.identifier.citationSerdica Journal of Computing, 7 (2), p. 143-164-
dc.identifier.issn1312-6555-
dc.identifier.urihttp://hdl.handle.net/1942/16269-
dc.description.abstractAssociative classifiers use a set of class association rules, generated from a given training set, to classify new instances. Typically, these techniques set a minimal support to make a first selection of appropriate rules and discriminate subsequently between high and low quality rules by means of a quality measure such as confidence. As a result, the final set of class association rules have a support equal or greater than a predefined threshold, but many of them have confidence levels below 100%. PGN is a novel associative classifier which turns the traditional approach around and uses a confidence level of 100% as a first selection criterion, prior to maximizing the support. This article introduces PGN and evaluates the strength and limitations of PGN empirically. The results are promising and show that PGN is competitive with other well-known classifiers.-
dc.language.isoen-
dc.subject.otherAssociation Rules;Classification;High Confidence Rules-
dc.titleClassifier PGN: Classification with High Confidence Rules-
dc.typeJournal Contribution-
dc.identifier.epage164-
dc.identifier.issue2-
dc.identifier.spage143-
dc.identifier.volume7-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.identifier.vabbc:vabb:344261-
dc.identifier.urlhttp://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/181/183-
item.validationvabb 2015-
item.contributorMITOV, Iliya-
item.contributorDEPAIRE, Benoit-
item.contributorIVANOVA, Krassimira-
item.contributorVANHOOF, Koen-
item.fullcitationMITOV, Iliya; DEPAIRE, Benoit; IVANOVA, Krassimira & VANHOOF, Koen (2013) Classifier PGN: Classification with High Confidence Rules. In: Serdica Journal of Computing, 7 (2), p. 143-164.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1312-6555-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
181-396-1-PB.pdfPublished version410.97 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.