Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16291
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMallinckrodt, Craig-
dc.contributor.authorRoger, J.-
dc.contributor.authorChuang-Stein, C.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorO'Kelly, M.-
dc.contributor.authorRatitch, Bohdana-
dc.contributor.authorJANSSENS, Mark-
dc.contributor.authorBunouf, P.-
dc.date.accessioned2014-02-05T08:46:51Z-
dc.date.available2014-02-05T08:46:51Z-
dc.date.issued2014-
dc.identifier.citationTHERAPEUTIC INNOVATION & REGULATORY SCIENCE, 48 (1), p. 68-80-
dc.identifier.issn2168-4790-
dc.identifier.urihttp://hdl.handle.net/1942/16291-
dc.description.abstractRecent research has fostered new guidance on preventing and treating missing data, most notably the landmark expert panel report from the National Research Council (NRC) that was commissioned by FDA. One of the findings from that panel was the need for better software tools to conduct missing data sensitivity analyses and frameworks for drawing inference from them. In response to the NRC recommendations, a Scientific Working Group was formed under the Auspices of the Drug Information Association (DIASWG). The present paper is from work of the DIASWG. Specifically, the NRC panel's 18 recommendations are distilled into 3 pillars for dealing with missing data: (1) providing clearly stated objectives and causal estimands; (2) preventing as much missing data as possible; and (3) combining a sensible primary analysis with sensitivity analyses to assess robustness of inferences to missing data assumptions. Sample data sets are used to illustrate how sensitivity analyses can be used to assess robustness of inferences to missing data assumptions. The suite of software tools used to conduct the sensitivity analyses are freely available for public use at www.missingdata.org.uk.-
dc.language.isoen-
dc.rights© The Author(s) 2013 Reprints and permission: sagepub.com/journalsPermissions.nav-
dc.subject.othermissing data; clinical trials; sensitivity analyses; clinical-trials; depression; duloxetine; paroxetine-
dc.titleRecent Developments in the Prevention and Treatment of Missing Data-
dc.typeJournal Contribution-
dc.identifier.epage80-
dc.identifier.issue1-
dc.identifier.spage68-
dc.identifier.volume48-
local.bibliographicCitation.jcatA1-
dc.description.notesMallinckrodt, C (reprint author), Mallinckrodt, C (reprint author) Eli Lilly & Co, Lilly Res Labs, Indianapolis, IN 46285 USA. cmallinc@lilly.com-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1177/2168479013501310-
dc.identifier.isi000329164100009-
item.contributorMallinckrodt, Craig-
item.contributorRoger, J.-
item.contributorChuang-Stein, C.-
item.contributorMOLENBERGHS, Geert-
item.contributorO'Kelly, M.-
item.contributorRatitch, Bohdana-
item.contributorJANSSENS, Mark-
item.contributorBunouf, P.-
item.fullcitationMallinckrodt, Craig; Roger, J.; Chuang-Stein, C.; MOLENBERGHS, Geert; O'Kelly, M.; Ratitch, Bohdana; JANSSENS, Mark & Bunouf, P. (2014) Recent Developments in the Prevention and Treatment of Missing Data. In: THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 48 (1), p. 68-80.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2015-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
TRIS_Missing_data_2013.pdf
  Restricted Access
Published version350.26 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.