Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16334
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBOHLER, Sacha-
dc.contributor.authorSergeant, Kjell-
dc.contributor.authorJolivet, Yves-
dc.contributor.authorHoffmann, Lucien-
dc.contributor.authorHausman, Jean-Francois-
dc.contributor.authorDizengremel, Pierre-
dc.contributor.authorRenaut, Jenny-
dc.date.accessioned2014-02-13T11:25:49Z-
dc.date.available2014-02-13T11:25:49Z-
dc.date.issued2013-
dc.identifier.citationPROTEOMICS, 13 (10-11), p. 1737-1754-
dc.identifier.issn1615-9853-
dc.identifier.urihttp://hdl.handle.net/1942/16334-
dc.description.abstractThe occurrence of high-ozone concentrations during drought episodes is common considering that they are partially caused by the same meteorological phenomena. It was suggested that mild drought could protect plants against ozone-induced damage by causing the closure of stomata and preventing the entry of ozone into the leaves. The present experiment attempts to create an overview of the changes in cellular processes in response to ozone, mild drought and a combined treatment based on the use of 2D-DiGE to compare the involved proteins, and a number of supporting analyses. Morphological symptoms were worst in the combined treatment, indicating a severe stress, but fewer proteins were differentially abundant in the combined treatment than for ozone alone. Stomatal conductance was slightly lowered in the combined treatment. Shifts in carbon metabolism indicated that the metabolism changed to accommodate for protective measures and changes in the abundance of proteins involved in redox protection indicated the presence of an oxidative stress. This study allowed identifying a set of proteins that changed similarly during ozone and drought stress, indicative of crosstalk in the molecular response of plants exposed to these stresses. The abundance of other key proteins changed only when the plants are exposed to specific conditions. Together this indicates the coexistence of generalized and specialized responses to different conditions.-
dc.description.sponsorshipFonds National de la Recherche Luxembourg-
dc.language.isoen-
dc.rights© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.subject.otherDiGE; Drought; Oxidative stress; Ozone; Plant physiology; Plant proteomics-
dc.titleA physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought-
dc.typeJournal Contribution-
dc.identifier.epage1754-
dc.identifier.issue10-11-
dc.identifier.spage1737-
dc.identifier.volume13-
local.bibliographicCitation.jcatA1-
dc.relation.references[1] Vingarzan, R., A review of surface ozone background levels and trends. Atmos Environ 2004, 38, 3431-3442. [2] Pachauri, R., IPCC Secretariat, 7 bis Avenue de la Paix C. P. 2300 Geneva 2 CH- 1211 Switzerland 2007. [3] Ebi, K. L., McGregor, G., Climate change, tropospheric ozone and particulate matter, and health impacts. Environ Health Perspect 2008, 116, 1449-1455. [4] Sandermann, H., Jr., Ozone and plant health. Annu Rev Phytopathol 1996, 34, 347-366. [5] Matyssek, R., Karnosky, D. F., Wieser, G., Percy, K., et al., Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies. Environ Pollut 2010, 158, 1990-2006. [6] Fuhrer, J., Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 2009, 96, 173-194. [7] Broadmeadow, M., Ozone and forest trees. New Phytol 1998, 139, 123-125. [8] Tai, H. H., Percy, K. E., Karnosky, D. F., DNA damage in Populus tremuloides clones exposed to elevated O3. Environ Pollut 2010, 158, 969-976. [9] Di Baccio, D., Castagna, A., Paoletti, E., Sebastiani, L., Ranieri, A., Could the differences in O3 sensitivity between two poplar clones be related to a difference in antioxidant defense and secondary metabolic response to O3 influx? Tree Physiol 2008, 28, 1761-1772. [10] Ryan, A., Cojocariu, C., Possell, M., Davies, W. J., Hewitt, C. N., Defining hybrid poplar (Populus deltoides × Populus trichocarpa) tolerance to ozone: Identifying key parameters. Plant Cell Environ 2009, 32, 31-45. [11] Baier, M., Kandlbinder, A., Golldack, D., Dietz, K.-J., Oxidative stress and ozone: Perception, signalling and response. Plant Cell Environ 2005, 28, 1012-1020. [12] Castagna, A., Ranieri, A., Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment. Environmental pollution (Barking, Essex) 2009, 157, 1461-1469. [13] Dizengremel, P., Le Thiec, D., Hasenfratz-Sauder, M.-P., Vaultier, M.-N., et al., Metabolic-dependent changes in plant cell redox power after ozone exposure. Plant Biol 2009, 11, 35-42. [14] van Hove, L. W. A., Bossen, M. E., San Gabino, B. G., Sgreva, C., The ability of apoplastic ascorbate to protect poplar leaves against ambient ozone concentrations: A quantitative approach. Environ Pollut 2001, 114, 371-382. [15] Dizengremel, P., Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 2001, 39, 729-742. [16] Renaut, J., Bohler, S., Hausman, J.-F., Hoffmann, L., et al., The impact of atmospheric composition on plants: A case study of ozone and poplar. Mass Spectrom Rev 2009, 28, 495-516. [17] Ciais, P., Reichstein, M., Viovy, N., Granier, A., et al., Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529-533. [18] Kreuzwieser, J., Gessler, A., Global climate change and tree nutrition: Influence of water availability. Tree Physiol 2010, 30, 1221-1234. [19] Bernstein, L., Bosch, P., Canziani, O., Chen, Z., et al., Intergovernmental Panel on Climate Change 2007. [20] Shao, H.-B., Chu, L.-Y., Jaleel, C. A., Zhao, C.-X., Water-deficit stress-induced anatomical changes in higher plants. C R Biol 2008, 331, 215-225. [21] Flexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T. D., Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 2004, 6, 269-279. [22] Bota, J., Medrano, H., Flexas, J., Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 2004, 162, 671-681. [23] Parry, M. A. J., Andralojc, P. J., Khan, S., Lea, P. J., Keys, A. J., Rubisco activity: Effects of drought stress. Ann Bot 2002, 89, 833-839. [24] Pelloux, J., Jolivet, Y., Fontaine, V., Banvoy, J., Dizengremel, P., Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought. Plant Cell Environ 2001, 24, 123-131. [25] Tezara, W., Mitchell, V. J., Driscoll, S. D., Lawlor, D. W., Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 1999, 401, 914-917. [26] Flexas, J., Medrano, H., Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann Bot 2002, 89, 183-189. [27] Atkin, O. K., Macherel, D., The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 2009, 103, 581-597. [28] Peuke, A. D., Schraml, C., Hartung, W., Rennenberg, H., Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 2002, 154, 373-387. [29] Rennenberg, H., Loreto, F., Polle, A., Brilli, F., et al., Physiological responses of forest trees to heat and drought. Plant Biol 2006, 8, 556-571. [30] Matyssek, R., Le Thiec, D., Löw, M., Dizengremel, P., et al., Interactions between drought and O3 stress in forest trees. Plant Biol 2006, 8, 11-17. [31] Inclán, R., Alonso, R., Pujadas, M., Terés, J., Gimeno, B. S., Ozone and drought stress: Interactive effects on gas exchange in Aleppo pine (Pinus halepensis Mill.). Chemosphere 1998, 36, 685-690. [32] Pääkkönen, E., Günthardt-Goerg, M. S., Holopainen, T., Response of leaf processes in sensitive birch (Betula pedula Roth) clone to ozone combined with drought. Ann Bot 1998, 82, 49-59. [33] Pearson, M., Mansfield, T. A., Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.). New Phytol 1993, 123, 351-358. [34] Le Thiec, D., Manninen, S., Ozone and water deficit reduced growth of Aleppo pine seedlings. Plant Physiol Biochem 2002, 41, 55-63. [35] Pääkkönen, E., Vahala, J., Pohjola, M., Holopainen, T., Kärenlampi, L., Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ 1998, 21, 671-684. [36] Fontaine, V., Cabané, M., Dizengremel, P., Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress. Physiol Plant 2003, 117, 445-452. [37] Bagard, M., Le Thiec, D., Delacote, E., Hasenfratz-Sauder, M. P., et al., Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Physiol Plant 2008, 134, 559-574. [38] Kieffer, P., Schroder, P., Dommes, J., Hoffmann, L., et al., Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 2009, 72, 379-396. [39] Skynner, H. A., Rosahl, T. W., Knowles, M. R., Salim, K., et al., Alterations of stress related proteins in genetically altered mice revealed by two-dimensional differential in-gel electrophoresis. Proteomics 2002, 2, 1018-1025. [40] Bohler, S., Bagard, M., Oufir, M., Planchon, S., et al., A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 2007, 7, 1584-1599. [41] Millar, A. H., Sweetlove, L. J., Giegé, P., Leaver, C. J., Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 2001, 127, 1711-1727. [42] Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G., Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000, 300, 1005-1016. [43] Bech-Serra, J. J., Borthwick, A., Colomé, N., A multi-laboratory study assessing reproducibility of a 2D-DIGE differential proteomic experiment. J Biomol Tech 2009, 20, 293. [44] Langebartels, C., Wohlgemuth, H., Schieschan, S., Grün, S., Sandermann, H., Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem 2002, 40, 567-575. [45] Nunn, A. J., Anegg, S., Betz, G., Simons, S., et al., Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech. Plant Cell Environ 2005, 28, 886-897. [46] Street, N. R., James, T. M., James, T., Mikael, B., et al., The physiological, transcriptional and genetic responses of an ozone-sensitive and an ozone tolerant poplar and selected extremes of their F2 progeny. Environ Pollut 2011, 159, 45-54. [47] Bohler, S., Sergeant, K., Lefèvre, I., Jolivet, Y., et al., Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. Tree Physiol 2010, 30, 1415-1432. [48] Torres, N. L., Cho, K., Shibato, J., Hirano, M., et al., Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 2007, 28, 4369-4381. [49] Degl'Innocenti, E., Guidi, L., Soldatini, G. F., Effect of chronic O3 fumigation on the activity of some Calvin cycle enzymes in two poplar clones. Photosynthetica 2002, 40, 121-126. [50] Sergeant, K., Spieß, N., Renaut, J., Wilhelm, E., Hausman, J.-F., One dry summer: A leaf proteome study on the response of oak to drought exposure. J Proteomics 2011, 74, 1385-1395. [51] Agrawal, G. K., Rakwal, R., Yonekura, M., Kubo, A., Saji, H., Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2002, 2, 947-959. [52] Pell, E. J., Eckardt, N., Enyedi, A. J., Timing of ozone stress and resulting status of ribulose bisphosphate carboxylase/oxygenase and associated net photosynthesis. New Phytol 1992, 120, 397-405. [53] Heath, R. L., Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environ Pollut 2008, 155, 453-463. [54] Foyer, C. H., Lelandais, M., Kunert, K. J., Photooxidative stress in plants. Physiol Plant 1994, 92, 696-717. [55] Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., et al., Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Nat Biotechnol 1994, 12, 165-168. [56] Briat, J. F., Lobréaux, S., Grignon, N., Vansuyt, G., Regulation of plant ferritin synthesis: How and why. Cell Mol Life Sci 1999, 56, 155-166. [57] Bartosz, G., Oxidative stress in plants. Acta Physiol Plant 1997, 19, 47-64. [58] Godde, D., Buchhold, J., Effect of long term fumigation with ozone on the turnover of the D-1 reaction center polypetide of photosystem II in spruce (Picea abies). Physiol Plant 1992, 86, 568-574. [59] Sarkar, A., Rakwal, R., Bhushan Agrawal, S., Shibato, J., et al., Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteome Res 2010, 9, 4565-4584. [60] Paoletti, E., Grulke, N. E., Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut 2005, 137, 483-493. [61] Wilkinson, S., Davies, W. J., Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. Plant Cell Environ 2009, 32, 949-959. [62] Wilkinson, S., Davies, W. J., Drought, ozone, ABA and ethylene: New insights from cell to plant to community. Plant Cell Environ 2010, 33, 510-525. [63] Iyer, N. J., Tang, Y., Mahalingam, R., Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ 2013, 36, 706-720. [64] Regier, N., Streb, S., Cocozza, C., Schaub, M., et al., Drought tolerance of two black poplar (Populus nigra L.) clones: Contribution of carbohydrates and oxidative stress defence. Plant Cell Environ 2009, 32, 1724-1736. [65] Pellinen, R., Palva, T., Kangasjärvi, J., Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 1999, 20, 349-356. [66] Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., et al., Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 2002, 25, 717-726. [67] Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., et al., Cadmium stress: an oxidative challenge. Biometals 2010, 23, 927-940. [68] Smeets, K., Opdenakker, K., Remans, T., Van Sanden, S., et al., Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. J Plant Physiol 2009, 166, 1982-1992. [69] Desimone, M., Henke, A., Wagner, E., Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol 1996, 111, 789-796. [70] Romero-Puertas, M. C., Palma, J. M., Gómez, M., Del Río, L. A., Sandalio, L. M., Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 2002, 25, 677-686. [71] Lichtenthaler, H. K., Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol 1996, 148, 4-14.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pmic.201200193-
dc.identifier.isi000319828700021-
item.fullcitationBOHLER, Sacha; Sergeant, Kjell; Jolivet, Yves; Hoffmann, Lucien; Hausman, Jean-Francois; Dizengremel, Pierre & Renaut, Jenny (2013) A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought. In: PROTEOMICS, 13 (10-11), p. 1737-1754.-
item.fulltextWith Fulltext-
item.validationecoom 2014-
item.accessRightsRestricted Access-
item.contributorBOHLER, Sacha-
item.contributorSergeant, Kjell-
item.contributorJolivet, Yves-
item.contributorHoffmann, Lucien-
item.contributorHausman, Jean-Francois-
item.contributorDizengremel, Pierre-
item.contributorRenaut, Jenny-
crisitem.journal.issn1615-9853-
crisitem.journal.eissn1615-9861-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1200.pdf
  Restricted Access
Published version666.76 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

24
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

24
checked on Sep 28, 2024

Page view(s)

112
checked on Sep 7, 2022

Download(s)

84
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.