Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/16381
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vandenbulcke, Gregory | - |
dc.contributor.author | Thomas, Isabelle | - |
dc.contributor.author | INT PANIS, Luc | - |
dc.date.accessioned | 2014-02-27T14:04:21Z | - |
dc.date.available | 2014-02-27T14:04:21Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | ACCIDENT ANALYSIS AND PREVENTION, 62, p. 341-357 | - |
dc.identifier.issn | 0001-4575 | - |
dc.identifier.uri | http://hdl.handle.net/1942/16381 | - |
dc.description.abstract | This paper aims at predicting cycling accident risk for an entire network and identifying how road infra-structure influences cycling safety in the Brussels-Capital Region (Belgium). A spatial Bayesian modelling approach is proposed using a binary dependent variable (accident, no accident at location i) constructed from a case–control strategy. Control sites are sampled along the ‘bikeable’ road network in function of the potential bicycle traffic transiting in each ward. Risk factors are limited to infrastructure, traffic and environmental characteristics.Results suggest that a high risk is statistically associated with the presence of on-road tram tracks,bridges without cycling facility, complex intersections, proximity to shopping centres or garages, and busy van and truck traffic. Cycle facilities built at intersections and parked vehicles located next to separated cycle facilities are also associated with an increased risk, whereas contraflow cycling is associated with a reduced risk. The cycling accident risk is far from being negligible in points where there is actually no reported cycling accident but where they are yet expected to occur. Hence, mapping predicted accident risks provides planners and policy makers with a useful tool for accurately locating places with a high potential risk even before accidents actually happen. This also provides comprehensible information for orienting cyclists to the safest routes in Brussels. | - |
dc.language.iso | en | - |
dc.rights | © 2013 Elsevier Ltd. All rights reserved. | - |
dc.subject.other | bicycle accident; accident risk; bayesian framework; case–control strategy; risk factors; cyclinga | - |
dc.title | Predicting cycling accident risk in Brussels: A spatial case-control approach | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 357 | - |
dc.identifier.spage | 341 | - |
dc.identifier.volume | 62 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.aap.2013.07.001 | - |
dc.identifier.isi | 000329599800040 | - |
item.validation | ecoom 2015 | - |
item.contributor | Vandenbulcke, Gregory | - |
item.contributor | Thomas, Isabelle | - |
item.contributor | INT PANIS, Luc | - |
item.fullcitation | Vandenbulcke, Gregory; Thomas, Isabelle & INT PANIS, Luc (2014) Predicting cycling accident risk in Brussels: A spatial case-control approach. In: ACCIDENT ANALYSIS AND PREVENTION, 62, p. 341-357. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
crisitem.journal.issn | 0001-4575 | - |
crisitem.journal.eissn | 1879-2057 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
vandenbulcke 1.pdf Restricted Access | Peer-reviewed author version | 3.6 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.