Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/16408
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | LIANG, Xin | - |
dc.contributor.author | Lin, Zuoquan | - |
dc.contributor.author | VAN DEN BUSSCHE, Jan | - |
dc.date.accessioned | 2014-03-13T12:45:22Z | - |
dc.date.available | 2014-03-13T12:45:22Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | R. Zaïane, Osmar; Zilles, Sandra (Ed.). Advances in Artificial Intelligence: 26th Canadian Conference on Artificial Intelligence, Canadian AI 2013, Regina, SK, Canada, May 28-31, 2013. Proceedings, p. 271-277 | - |
dc.identifier.isbn | 978-3-642-38457-8 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | http://hdl.handle.net/1942/16408 | - |
dc.description.abstract | Forgetting is a feasible tool for weakening knowledge bases by focusing on the most important issues, and ignoring irrelevant, outdated, or even inconsistent information, in order to improve the efficiency of inference, as well as resolve conflicts in the knowledge base. Also, forgetting has connections with relevance between a variable and a formula. However, in the existing literature, the definition of relevance is “binary” – there are only the concepts of “relevant” and “irrelevant”, and no means to evaluate the “degree” of relevance between variables and formulas. This paper presents a method to define the formula-variable relevance in a quantitative way, using the tool of variable forgetting, by evaluating the change of model set of a certain formula after forgetting a certain variable in it. We also discuss properties, examples and one possible application of the definition. | - |
dc.language.iso | en | - |
dc.publisher | Springer Berlin Heidelberg | - |
dc.relation.ispartofseries | Lecture Notes in Computer Science | - |
dc.rights | © Springer-Verlag Berlin Heidelberg 2013. | - |
dc.subject.other | knowledge representation; forgetting; relevance; inconsistency | - |
dc.title | Quantitatively evaluating formula-variable relevance by forgetting | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.authors | R. Zaïane, Osmar | - |
local.bibliographicCitation.authors | Zilles, Sandra | - |
local.bibliographicCitation.conferencedate | 28-31 May 2013 | - |
local.bibliographicCitation.conferencename | 26th Canadian Conference on AI | - |
local.bibliographicCitation.conferenceplace | Regina, Saskatchewan, Canada | - |
dc.identifier.epage | 277 | - |
dc.identifier.spage | 271 | - |
local.bibliographicCitation.jcat | C1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
local.relation.ispartofseriesnr | 7884 | - |
dc.identifier.doi | 10.1007/978-3-642-38457-8_26 | - |
dc.identifier.url | http://alpha.uhasselt.be/~lucp1080/xin.pdf | - |
local.bibliographicCitation.btitle | Advances in Artificial Intelligence: 26th Canadian Conference on Artificial Intelligence, Canadian AI 2013, Regina, SK, Canada, May 28-31, 2013. Proceedings | - |
item.fulltext | With Fulltext | - |
item.contributor | LIANG, Xin | - |
item.contributor | Lin, Zuoquan | - |
item.contributor | VAN DEN BUSSCHE, Jan | - |
item.fullcitation | LIANG, Xin; Lin, Zuoquan & VAN DEN BUSSCHE, Jan (2013) Quantitatively evaluating formula-variable relevance by forgetting. In: R. Zaïane, Osmar; Zilles, Sandra (Ed.). Advances in Artificial Intelligence: 26th Canadian Conference on Artificial Intelligence, Canadian AI 2013, Regina, SK, Canada, May 28-31, 2013. Proceedings, p. 271-277. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
xin.pdf Restricted Access | 138.77 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.