Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIANG, Xin-
dc.contributor.authorLin, Zuoquan-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.date.accessioned2014-03-13T12:45:22Z-
dc.date.available2014-03-13T12:45:22Z-
dc.date.issued2013-
dc.identifier.citationR. Zaïane, Osmar; Zilles, Sandra (Ed.). Advances in Artificial Intelligence: 26th Canadian Conference on Artificial Intelligence, Canadian AI 2013, Regina, SK, Canada, May 28-31, 2013. Proceedings, p. 271-277-
dc.identifier.isbn978-3-642-38457-8-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/16408-
dc.description.abstractForgetting is a feasible tool for weakening knowledge bases by focusing on the most important issues, and ignoring irrelevant, outdated, or even inconsistent information, in order to improve the efficiency of inference, as well as resolve conflicts in the knowledge base. Also, forgetting has connections with relevance between a variable and a formula. However, in the existing literature, the definition of relevance is “binary” – there are only the concepts of “relevant” and “irrelevant”, and no means to evaluate the “degree” of relevance between variables and formulas. This paper presents a method to define the formula-variable relevance in a quantitative way, using the tool of variable forgetting, by evaluating the change of model set of a certain formula after forgetting a certain variable in it. We also discuss properties, examples and one possible application of the definition.-
dc.language.isoen-
dc.publisherSpringer Berlin Heidelberg-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.rights© Springer-Verlag Berlin Heidelberg 2013.-
dc.subject.otherknowledge representation; forgetting; relevance; inconsistency-
dc.titleQuantitatively evaluating formula-variable relevance by forgetting-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsR. Zaïane, Osmar-
local.bibliographicCitation.authorsZilles, Sandra-
local.bibliographicCitation.conferencedate28-31 May 2013-
local.bibliographicCitation.conferencename26th Canadian Conference on AI-
local.bibliographicCitation.conferenceplaceRegina, Saskatchewan, Canada-
dc.identifier.epage277-
dc.identifier.spage271-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr7884-
dc.identifier.doi10.1007/978-3-642-38457-8_26-
dc.identifier.urlhttp://alpha.uhasselt.be/~lucp1080/xin.pdf-
local.bibliographicCitation.btitleAdvances in Artificial Intelligence: 26th Canadian Conference on Artificial Intelligence, Canadian AI 2013, Regina, SK, Canada, May 28-31, 2013. Proceedings-
item.fulltextWith Fulltext-
item.contributorLIANG, Xin-
item.contributorLin, Zuoquan-
item.contributorVAN DEN BUSSCHE, Jan-
item.fullcitationLIANG, Xin; Lin, Zuoquan & VAN DEN BUSSCHE, Jan (2013) Quantitatively evaluating formula-variable relevance by forgetting. In: R. Zaïane, Osmar; Zilles, Sandra (Ed.). Advances in Artificial Intelligence: 26th Canadian Conference on Artificial Intelligence, Canadian AI 2013, Regina, SK, Canada, May 28-31, 2013. Proceedings, p. 271-277.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
xin.pdf
  Restricted Access
138.77 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.