Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16470
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNJAGI, Edmund-
dc.contributor.authorRizopoulos, Dimitri-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorDENDALE, Paul-
dc.contributor.authorWILLEKENS, Koen-
dc.date.accessioned2014-03-24T11:33:45Z-
dc.date.available2014-03-24T11:33:45Z-
dc.date.issued2013-
dc.identifier.citationStatistical modelling, 13 (3), p. 179-198-
dc.identifier.issn1471-082X-
dc.identifier.urihttp://hdl.handle.net/1942/16470-
dc.description.abstractTelemonitoring in chronic heart failure involves remote monitoring, by clinicians, of daily patient measurements of biomarkers, such as, blood pressure and heart rate. As a strategy in heart failure management, the aim is for clinicians to use these measurements to predict rehospitalization,so that intervention decisions can be made. This is important for clinical practice since heart failure patients have a very high rehospitalization rate. We present a dynamic prediction approach, based on calculating dynamically-updated patient-specific conditional survival probabilities, and their confidence intervals, from a joint model for the time-to-rehospitalization and the time-varying and possibly errorcontaminated biomarker. We quantify the ability of the biomarker to discriminate between patients who are and those who are not going to get rehospitalized within a given time window of interest. This approach does not only provide a sound statistical modelling approach to the substantive problem, a problem which to the best of our knowledge has not previously been addressed using a statistical modelling approach, it also provides clinicians with a valuable additional tool on which to base their intervention decisions, and thus provides immense contribution to heart failure management.-
dc.description.sponsorshipIAP research Network of the Belgian government (Belgian Science Policy)-
dc.language.isoen-
dc.rights© 2013 SAGE Publications.-
dc.subject.otherarea under the receiver operating characteristic curve (AUC); dynamic discriminative index; dynamic prediction; joint modelling-
dc.titleA joint survival-longitudinal modelling approach for the dynamic prediction of rehospitalization in telemonitored chronic heart failure patients.-
dc.typeJournal Contribution-
dc.identifier.epage198-
dc.identifier.issue3-
dc.identifier.spage179-
dc.identifier.volume13-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1177/1471082X13478880-
dc.identifier.isi000320228900001-
item.fulltextWith Fulltext-
item.contributorNJAGI, Edmund-
item.contributorRizopoulos, Dimitri-
item.contributorMOLENBERGHS, Geert-
item.contributorDENDALE, Paul-
item.contributorWILLEKENS, Koen-
item.fullcitationNJAGI, Edmund; Rizopoulos, Dimitri; MOLENBERGHS, Geert; DENDALE, Paul & WILLEKENS, Koen (2013) A joint survival-longitudinal modelling approach for the dynamic prediction of rehospitalization in telemonitored chronic heart failure patients.. In: Statistical modelling, 13 (3), p. 179-198.-
item.accessRightsOpen Access-
item.validationecoom 2014-
crisitem.journal.issn1471-082X-
crisitem.journal.eissn1477-0342-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
A joint survival-longitudinal modelling approach ... - main document.pdfPeer-reviewed author version206.97 kBAdobe PDFView/Open
A joint survival-longitudinal modelling approach ... - web appendix.pdfSupplementary material50.23 kBAdobe PDFView/Open
njagi2013.pdf
  Restricted Access
Published version268.76 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.