Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16736
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKelchtermans, Pieter-
dc.contributor.authorBittremieux, Wout-
dc.contributor.authorDe Grave, Kurt-
dc.contributor.authorDegroeve, Sven-
dc.contributor.authorRamon, Jan-
dc.contributor.authorLaukens, Kris-
dc.contributor.authorVALKENBORG, Dirk-
dc.contributor.authorBarsnes, Harald-
dc.contributor.authorMartens, Lennart-
dc.date.accessioned2014-04-29T13:41:52Z-
dc.date.available2014-04-29T13:41:52Z-
dc.date.issued2014-
dc.identifier.citationPROTEOMICS, 14 (4-5), p. 353-366-
dc.identifier.issn1615-9853-
dc.identifier.urihttp://hdl.handle.net/1942/16736-
dc.description.abstractMachine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis.-
dc.description.sponsorshipSBO grant "InSPECtor" of the Flemish agency for Innovation by Science and Technology (IWT) (grant number 120025); Research Council of Norway; Ghent University (Multidisciplinary Research Partnership "Bioinformatics: from nucleotides to networks"); PRIME-XS project (grant number 262067); "ProteomeXchange" project (grant number 260558); European Union; ERC (grant number 240186)-
dc.language.isoen-
dc.rights© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.subject.otherbioinformatics; machine learning; pattern recognition; shotgun proteomics; standardization-
dc.titleMachine learning applications in proteomics research: How the past can boost the future-
dc.typeJournal Contribution-
dc.identifier.epage366-
dc.identifier.issue4-5-
dc.identifier.spage353-
dc.identifier.volume14-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1002/pmic.201300289-
dc.identifier.isi000332341200003-
item.fulltextWith Fulltext-
item.contributorKelchtermans, Pieter-
item.contributorBittremieux, Wout-
item.contributorDe Grave, Kurt-
item.contributorDegroeve, Sven-
item.contributorRamon, Jan-
item.contributorLaukens, Kris-
item.contributorVALKENBORG, Dirk-
item.contributorBarsnes, Harald-
item.contributorMartens, Lennart-
item.fullcitationKelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; VALKENBORG, Dirk; Barsnes, Harald & Martens, Lennart (2014) Machine learning applications in proteomics research: How the past can boost the future. In: PROTEOMICS, 14 (4-5), p. 353-366.-
item.accessRightsRestricted Access-
item.validationecoom 2015-
crisitem.journal.issn1615-9853-
crisitem.journal.eissn1615-9861-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
kelchtermans 1.pdf
  Restricted Access
Published version648.65 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.