Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBONCKAERT, Patrick-
dc.date.accessioned2014-05-23T12:26:17Z-
dc.date.available2014-05-23T12:26:17Z-
dc.date.issued2014-
dc.identifier.citationJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 419(2), p. 1143-1160.-
dc.identifier.issn0022-247X-
dc.identifier.urihttp://hdl.handle.net/1942/16809-
dc.description.abstractGiven a 1:-1 resonant saddle singularity of a planar analytic vector field, we provide a linearization procedure using a series expansion in compensators of Mourtada-type, and show that this series has Gevrey-1 asymptotics. In case of an analytic Poincar\'e-Dulac normal form we show that this transformation is analytic as a function of the compensators-
dc.language.isoen-
dc.rights© 2014 Elsevier Inc. All rights reserved.-
dc.subject.othervector field; linearization; resonance; Gevrey series; compensator-
dc.titleGevrey asymptotics of series in Mourtada-type compensators used for linearization of an analytic 1:-1 resonant saddle-
dc.typeJournal Contribution-
dc.identifier.epage1160-
dc.identifier.issue2-
dc.identifier.spage1143-
dc.identifier.volume419-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jmaa.2014.05.056-
dc.identifier.isi000338908600030-
item.contributorBONCKAERT, Patrick-
item.fullcitationBONCKAERT, Patrick (2014) Gevrey asymptotics of series in Mourtada-type compensators used for linearization of an analytic 1:-1 resonant saddle. In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 419(2), p. 1143-1160..-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2015-
crisitem.journal.issn0022-247X-
crisitem.journal.eissn1096-0813-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
compensators.pdfPeer-reviewed author version292.38 kBAdobe PDFView/Open
1-s2.0-S0022247X14004983-main.pdf
  Restricted Access
Published version388.31 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.