Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/16979
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIacopi, F.-
dc.contributor.authorBeyer, G.-
dc.contributor.authorTravaly, Y.-
dc.contributor.authorWaldfried, C.-
dc.contributor.authorGage, D. M.-
dc.contributor.authorDauskardt, R. H.-
dc.contributor.authorHouthoofd, K.-
dc.contributor.authorJACOBS, Marie-Paule-
dc.contributor.authorADRIAENSENS, Peter-
dc.contributor.authorSchulze, K.-
dc.contributor.authorSchulz, S. E.-
dc.contributor.authorList, S.-
dc.contributor.authorCarlotti, G.-
dc.date.accessioned2014-07-18T11:51:50Z-
dc.date.available2014-07-18T11:51:50Z-
dc.date.issued2007-
dc.identifier.citationACTA MATERIALIA, 55 (4), p. 1407-1414-
dc.identifier.issn1359-6454-
dc.identifier.urihttp://hdl.handle.net/1942/16979-
dc.description.abstractUltraviolet (UV)-assisted cure has recently been reported as an efficient method to enhance the mechanical properties of organosilicate glasses (OSG) at the expense of only minor film densification. In this work we show that, depending on the OSG material, the effect of UV-cure on fracture and thermal conductivity properties can vary to a large extent even though the same extent of stiffness enhancement is obtained. When the increase of elastic modulus is mostly due to the rearrangement of the silica matrix into more stable silica bonds, the film cohesion strength and thermal conductivity are also improved. Conversely, these properties remain unaffected when the dominant UV-cure mechanism is the increase of matrix connectivity. In the latter case, film adhesion is enhanced. The dominant UV-cure mechanism depends on the initial degree of cross-linking and on the mobility of the OSG matrix. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subject.otherMaterials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering-
dc.subject.otherUV-curing; organosilicate glasses; elastic behaviour; fracture; thermal conductivity-
dc.titleThermomechanical properties of thin organosilicate glass films treated with ultraviolet-assisted cure-
dc.typeJournal Contribution-
dc.identifier.epage1414-
dc.identifier.issue4-
dc.identifier.spage1407-
dc.identifier.volume55-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesIMEC, B-3001 Louvain, Belgium. Axcelis Technol, Beverly, MA 01915 USA. Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Dept Bioengn, B-3001 Louvain, Belgium. IMO, Div Chem, B-3590 Diepenbeek, Belgium. Tech Univ Chemnitz, Ctr Microtechnol, D-09107 Chemnitz, Germany. Univ Perugia, Dept Phys, I-06123 Perugia, Italy.-
local.publisher.placeOXFORD-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.actamat.2006.10.008-
dc.identifier.isi000244548100026-
item.fullcitationIacopi, F.; Beyer, G.; Travaly, Y.; Waldfried, C.; Gage, D. M.; Dauskardt, R. H.; Houthoofd, K.; JACOBS, Marie-Paule; ADRIAENSENS, Peter; Schulze, K.; Schulz, S. E.; List, S. & Carlotti, G. (2007) Thermomechanical properties of thin organosilicate glass films treated with ultraviolet-assisted cure. In: ACTA MATERIALIA, 55 (4), p. 1407-1414.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.contributorList, S.-
item.contributorCarlotti, G.-
item.contributorIacopi, F.-
item.contributorADRIAENSENS, Peter-
item.contributorBeyer, G.-
item.contributorSchulze, K.-
item.contributorWaldfried, C.-
item.contributorDauskardt, R. H.-
item.contributorTravaly, Y.-
item.contributorJACOBS, Marie-Paule-
item.contributorSchulz, S. E.-
item.contributorHouthoofd, K.-
item.contributorGage, D. M.-
crisitem.journal.issn1359-6454-
crisitem.journal.eissn1873-2453-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
5046352b8a1ad9f425.pdf
  Restricted Access
Published Version288.06 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

33
checked on Sep 7, 2020

WEB OF SCIENCETM
Citations

27
checked on Jul 7, 2022

Page view(s)

66
checked on Jul 6, 2022

Download(s)

60
checked on Jul 6, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.