Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17097
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGijbels, Irène-
dc.contributor.authorVERHASSELT, Anneleen-
dc.contributor.authorVrinssen, Inge-
dc.date.accessioned2014-08-26T15:07:53Z-
dc.date.available2014-08-26T15:07:53Z-
dc.date.issued2015-
dc.identifier.citationWiley Interdisciplinary Reviews: Computational Statistics 7(1), p. 1-20.-
dc.identifier.issn1939-0068-
dc.identifier.urihttp://hdl.handle.net/1942/17097-
dc.description.abstractSelecting among a large set of variables those that influence most a response variable is an important problem in statistics.When the assumed regression model involves a nonparametric component, penalized regression techniques, and in particular P-splines, are among the commonly used methods. The aim of this paper is to provide a brief review of variable selection methods using P-splines. Starting frommultiple linear regression models,with least-squares regression, and Ridge regression, we review standard methods that perform variable selection, such as LASSO, nonnegative garrote, the SCAD method, etc. We briefly discuss a general framework of penalization and regularization methods. Going toward more flexible regression models, with some nonparametric component(s), we discuss P-splines estimation. For some examples of flexible regression models, we then review a few variable selection methods using P-splines. A brief discussion on grouped regularization techniques and on a robust variable selection method is given. Furthermore, we mention key ingredients in Bayesian approaches, and end the paper by drawing the attention to several other issues in variable selection with P-splines. Throughout the paper we provide some illustrations.-
dc.language.isoen-
dc.rights© 2014 Wiley Periodical s, Inc.-
dc.subject.otheradditive regression; linear regression; P-splines; regularization techniques; Ridge regression; robust variable selection; variable selection; varying coefficient models-
dc.titleVariable selection using P-splines-
dc.typeJournal Contribution-
dc.identifier.epage20-
dc.identifier.issue1-
dc.identifier.spage1-
dc.identifier.volume7-
local.bibliographicCitation.jcatA1-
dc.description.notesCorrespondence to: irene.gijbels@wis.kuleuven.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.identifier.vabbc:vabb:378822-
dc.identifier.doi10.1002/wics.1327-
dc.identifier.isi000367013700001-
item.validationvabb 2016-
item.contributorGijbels, Irène-
item.contributorVERHASSELT, Anneleen-
item.contributorVrinssen, Inge-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
item.fullcitationGijbels, Irène; VERHASSELT, Anneleen & Vrinssen, Inge (2015) Variable selection using P-splines. In: Wiley Interdisciplinary Reviews: Computational Statistics 7(1), p. 1-20..-
crisitem.journal.issn1939-0068-
crisitem.journal.eissn1939-0068-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Gijbels Verhasselt Vrinssen WIRE.pdf
  Restricted Access
Peer-reviewed author version485.36 kBAdobe PDFView/Open    Request a copy
Gijbels_et_al-2015-Wiley_Interdisciplinary_Reviews-_Computational_Statistics.pdf
  Restricted Access
Published version648.12 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.