Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/17097
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gijbels, Irène | - |
dc.contributor.author | VERHASSELT, Anneleen | - |
dc.contributor.author | Vrinssen, Inge | - |
dc.date.accessioned | 2014-08-26T15:07:53Z | - |
dc.date.available | 2014-08-26T15:07:53Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Wiley Interdisciplinary Reviews: Computational Statistics 7(1), p. 1-20. | - |
dc.identifier.issn | 1939-0068 | - |
dc.identifier.uri | http://hdl.handle.net/1942/17097 | - |
dc.description.abstract | Selecting among a large set of variables those that influence most a response variable is an important problem in statistics.When the assumed regression model involves a nonparametric component, penalized regression techniques, and in particular P-splines, are among the commonly used methods. The aim of this paper is to provide a brief review of variable selection methods using P-splines. Starting frommultiple linear regression models,with least-squares regression, and Ridge regression, we review standard methods that perform variable selection, such as LASSO, nonnegative garrote, the SCAD method, etc. We briefly discuss a general framework of penalization and regularization methods. Going toward more flexible regression models, with some nonparametric component(s), we discuss P-splines estimation. For some examples of flexible regression models, we then review a few variable selection methods using P-splines. A brief discussion on grouped regularization techniques and on a robust variable selection method is given. Furthermore, we mention key ingredients in Bayesian approaches, and end the paper by drawing the attention to several other issues in variable selection with P-splines. Throughout the paper we provide some illustrations. | - |
dc.language.iso | en | - |
dc.rights | © 2014 Wiley Periodical s, Inc. | - |
dc.subject.other | additive regression; linear regression; P-splines; regularization techniques; Ridge regression; robust variable selection; variable selection; varying coefficient models | - |
dc.title | Variable selection using P-splines | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 20 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 1 | - |
dc.identifier.volume | 7 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Correspondence to: irene.gijbels@wis.kuleuven.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.identifier.vabb | c:vabb:378822 | - |
dc.identifier.doi | 10.1002/wics.1327 | - |
dc.identifier.isi | 000367013700001 | - |
item.validation | vabb 2016 | - |
item.contributor | Gijbels, Irène | - |
item.contributor | VERHASSELT, Anneleen | - |
item.contributor | Vrinssen, Inge | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
item.fullcitation | Gijbels, Irène; VERHASSELT, Anneleen & Vrinssen, Inge (2015) Variable selection using P-splines. In: Wiley Interdisciplinary Reviews: Computational Statistics 7(1), p. 1-20.. | - |
crisitem.journal.issn | 1939-0068 | - |
crisitem.journal.eissn | 1939-0068 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gijbels Verhasselt Vrinssen WIRE.pdf Restricted Access | Peer-reviewed author version | 485.36 kB | Adobe PDF | View/Open Request a copy |
Gijbels_et_al-2015-Wiley_Interdisciplinary_Reviews-_Computational_Statistics.pdf Restricted Access | Published version | 648.12 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.