Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17695
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAREGAY, Mehreteab-
dc.contributor.authorSHKEDY, Ziv-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorDavid, Marie-Pierre-
dc.contributor.authorTIBALDI, Fabian-
dc.date.accessioned2014-10-24T15:18:33Z-
dc.date.available2014-10-24T15:18:33Z-
dc.date.issued2014-
dc.identifier.citationSTATISTICS IN BIOPHARMACEUTICAL RESEARCH, 6 (3), p. 199-212-
dc.identifier.issn1946-6315-
dc.identifier.urihttp://hdl.handle.net/1942/17695-
dc.description.abstractWhen the true relationship between a covariate and an outcome is nonlinear, one should use a nonlinear mean structure that can take this pattern into account. In this article, the fractional polynomial modeling framework, which assumes a prespecified set of powers, is extended to a nonlinear fractional polynomial framework (NLFP). Inferences are drawn in a Bayesian fashion. The proposed modeling paradigm is applied to predict the long-term persistence of vaccine-induced anti-HPV antibodies. In addition, the subject-specific posterior probability to be above a threshold value at a given time is calculated. The model is compared with a power-law model using the deviance information criterion (DIC). The newly proposed model is found to fit better than the power-law model. A sensitivity analysis was conducted, from which a relative independence of the results from the prior distribution of the power was observed. Supplementary materials for this article are available online.-
dc.description.sponsorshipIAP research Network of Belgian Government (Belgian Science Policy) [P7/06]-
dc.language.isoen-
dc.publisherAMER STATISTICAL ASSOC-
dc.rights© American Statistical Association-
dc.subject.otherDeviance information criterion; Fractional polynomial; model; Power-law model.-
dc.subject.otherdeviance information criterion; fractional polynomial model; power-law model-
dc.titleNon-linear Fractional Polynomials for Estimating Long-Term Persistence of Induced Anti-HPV Antibodies: A Hierarchical Bayesian Approach-
dc.typeJournal Contribution-
dc.identifier.epage212-
dc.identifier.issue3-
dc.identifier.spage199-
dc.identifier.volume6-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notes[Aregay, Mehreteab] Katholieke Univ Leuven, I BioStat, B-3000 Leuven, Belgium. [Shkedy, Ziv; Molenberghs, Geert] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium. [David, Marie-Pierre; Tibaldi, Fabian] GlaxoSmithKline Biol, B-1330 Rixensart, Belgium.-
local.publisher.placeALEXANDRIA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/19466315.2014.911201-
dc.identifier.isi000341582900001-
item.fulltextWith Fulltext-
item.contributorAREGAY, Mehreteab-
item.contributorSHKEDY, Ziv-
item.contributorMOLENBERGHS, Geert-
item.contributorDavid, Marie-Pierre-
item.contributorTIBALDI, Fabian-
item.fullcitationAREGAY, Mehreteab; SHKEDY, Ziv; MOLENBERGHS, Geert; David, Marie-Pierre & TIBALDI, Fabian (2014) Non-linear Fractional Polynomials for Estimating Long-Term Persistence of Induced Anti-HPV Antibodies: A Hierarchical Bayesian Approach. In: STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 6 (3), p. 199-212.-
item.accessRightsOpen Access-
item.validationecoom 2015-
crisitem.journal.issn1946-6315-
crisitem.journal.eissn1946-6315-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Revised_BayHPV_V3.pdfPeer-reviewed author version308.61 kBAdobe PDFView/Open
435.pdf
  Restricted Access
Published version711.78 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.