Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/17695
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | AREGAY, Mehreteab | - |
dc.contributor.author | SHKEDY, Ziv | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | David, Marie-Pierre | - |
dc.contributor.author | TIBALDI, Fabian | - |
dc.date.accessioned | 2014-10-24T15:18:33Z | - |
dc.date.available | 2014-10-24T15:18:33Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 6 (3), p. 199-212 | - |
dc.identifier.issn | 1946-6315 | - |
dc.identifier.uri | http://hdl.handle.net/1942/17695 | - |
dc.description.abstract | When the true relationship between a covariate and an outcome is nonlinear, one should use a nonlinear mean structure that can take this pattern into account. In this article, the fractional polynomial modeling framework, which assumes a prespecified set of powers, is extended to a nonlinear fractional polynomial framework (NLFP). Inferences are drawn in a Bayesian fashion. The proposed modeling paradigm is applied to predict the long-term persistence of vaccine-induced anti-HPV antibodies. In addition, the subject-specific posterior probability to be above a threshold value at a given time is calculated. The model is compared with a power-law model using the deviance information criterion (DIC). The newly proposed model is found to fit better than the power-law model. A sensitivity analysis was conducted, from which a relative independence of the results from the prior distribution of the power was observed. Supplementary materials for this article are available online. | - |
dc.description.sponsorship | IAP research Network of Belgian Government (Belgian Science Policy) [P7/06] | - |
dc.language.iso | en | - |
dc.publisher | AMER STATISTICAL ASSOC | - |
dc.rights | © American Statistical Association | - |
dc.subject.other | Deviance information criterion; Fractional polynomial; model; Power-law model. | - |
dc.subject.other | deviance information criterion; fractional polynomial model; power-law model | - |
dc.title | Non-linear Fractional Polynomials for Estimating Long-Term Persistence of Induced Anti-HPV Antibodies: A Hierarchical Bayesian Approach | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 212 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 199 | - |
dc.identifier.volume | 6 | - |
local.format.pages | 14 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Aregay, Mehreteab] Katholieke Univ Leuven, I BioStat, B-3000 Leuven, Belgium. [Shkedy, Ziv; Molenberghs, Geert] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium. [David, Marie-Pierre; Tibaldi, Fabian] GlaxoSmithKline Biol, B-1330 Rixensart, Belgium. | - |
local.publisher.place | ALEXANDRIA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1080/19466315.2014.911201 | - |
dc.identifier.isi | 000341582900001 | - |
item.fulltext | With Fulltext | - |
item.contributor | AREGAY, Mehreteab | - |
item.contributor | SHKEDY, Ziv | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | David, Marie-Pierre | - |
item.contributor | TIBALDI, Fabian | - |
item.fullcitation | AREGAY, Mehreteab; SHKEDY, Ziv; MOLENBERGHS, Geert; David, Marie-Pierre & TIBALDI, Fabian (2014) Non-linear Fractional Polynomials for Estimating Long-Term Persistence of Induced Anti-HPV Antibodies: A Hierarchical Bayesian Approach. In: STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 6 (3), p. 199-212. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2015 | - |
crisitem.journal.issn | 1946-6315 | - |
crisitem.journal.eissn | 1946-6315 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Revised_BayHPV_V3.pdf | Peer-reviewed author version | 308.61 kB | Adobe PDF | View/Open |
435.pdf Restricted Access | Published version | 711.78 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.