Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/176Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | VAN KEILEGOM, Ingrid | - |
| dc.contributor.author | VERAVERBEKE, Noel | - |
| dc.date.accessioned | 2004-08-28T07:53:01Z | - |
| dc.date.available | 2004-08-28T07:53:01Z | - |
| dc.date.issued | 1996 | - |
| dc.identifier.citation | Communications in Statistics A, 25(10). p. 2251-2265 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/176 | - |
| dc.description.abstract | We consider a fixed design model in which the responses are possibly right censored. The aim of this paper is to establish some important almost sure convergence properties of the Kaplan-Meier type estimator for the lifetime distribution at a given covariate value. We also consider the corresponding quantile estimator and obtain a modulus of continuity result. Our rates of uniform strong convergence are obtained via exponential probability bounds. | - |
| dc.language.iso | en | - |
| dc.subject | Mathematical Statistics | - |
| dc.subject | Non and semiparametric methods | - |
| dc.title | Uniform strong convergence results for the conditional Kaplan-Meier estimator and its quantiles | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 2265 | - |
| dc.identifier.issue | 10 | - |
| dc.identifier.spage | 2251 | - |
| dc.identifier.volume | 25 | - |
| dc.bibliographicCitation.oldjcat | - | |
| dc.identifier.doi | 10.1080/03610929608831836 | - |
| item.fulltext | No Fulltext | - |
| item.fullcitation | VAN KEILEGOM, Ingrid & VERAVERBEKE, Noel (1996) Uniform strong convergence results for the conditional Kaplan-Meier estimator and its quantiles. In: Communications in Statistics A, 25(10). p. 2251-2265. | - |
| item.contributor | VAN KEILEGOM, Ingrid | - |
| item.contributor | VERAVERBEKE, Noel | - |
| item.accessRights | Closed Access | - |
| Appears in Collections: | Research publications | |
SCOPUSTM
Citations
33
checked on Jan 10, 2026
WEB OF SCIENCETM
Citations
27
checked on Jan 7, 2026
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.