Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/176
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN KEILEGOM, Ingrid-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2004-08-28T07:53:01Z-
dc.date.available2004-08-28T07:53:01Z-
dc.date.issued1996-
dc.identifier.citationCommunications in Statistics A, 25(10). p. 2251-2265-
dc.identifier.urihttp://hdl.handle.net/1942/176-
dc.description.abstractWe consider a fixed design model in which the responses are possibly right censored. The aim of this paper is to establish some important almost sure convergence properties of the Kaplan-Meier type estimator for the lifetime distribution at a given covariate value. We also consider the corresponding quantile estimator and obtain a modulus of continuity result. Our rates of uniform strong convergence are obtained via exponential probability bounds.-
dc.language.isoen-
dc.subjectMathematical Statistics-
dc.subjectNon and semiparametric methods-
dc.titleUniform strong convergence results for the conditional Kaplan-Meier estimator and its quantiles-
dc.typeJournal Contribution-
dc.identifier.epage2265-
dc.identifier.issue10-
dc.identifier.spage2251-
dc.identifier.volume25-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1080/03610929608831836-
item.fulltextNo Fulltext-
item.contributorVAN KEILEGOM, Ingrid-
item.contributorVERAVERBEKE, Noel-
item.fullcitationVAN KEILEGOM, Ingrid & VERAVERBEKE, Noel (1996) Uniform strong convergence results for the conditional Kaplan-Meier estimator and its quantiles. In: Communications in Statistics A, 25(10). p. 2251-2265.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.