Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17789
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDonneau, A.F.-
dc.contributor.authorMauer, M.-
dc.contributor.authorLambert, Philippe-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorAlbert, A.-
dc.date.accessioned2014-11-14T09:47:10Z-
dc.date.available2014-11-14T09:47:10Z-
dc.date.issued2014-
dc.identifier.citationJournal of Biopharmaceutical Statistics, 25 (3), p. 570-601-
dc.identifier.issn1054-3406-
dc.identifier.urihttp://hdl.handle.net/1942/17789-
dc.description.abstractThe application of multiple imputation (MI) techniques as a preliminary step to handle missing values in data analysis is well established. The MI methods can be classified into two broad classes, the joint modeling and the fully conditional specification approaches. Their relative performance for longitudinal ordinal data setting is not well documented. This paper intends to ll this gap by conducting a large simulation study on the estimation of the parameters of a longitudinal proportional odds model. The two MI methods are also illustrated on a real dataset of quality of life in a cancer clinical trial.-
dc.language.isoen-
dc.rights(C) Taylor & Francis Group, LLC-
dc.subject.otherintermittent missingness; longitudinal analysis; missing at random; multiple imputation; nonmonotone missingness; ordinal variables-
dc.titleSimulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings-
dc.typeJournal Contribution-
dc.identifier.epage601-
dc.identifier.issue3-
dc.identifier.spage570-
dc.identifier.volume25-
local.format.pages43-
local.bibliographicCitation.jcatA1-
dc.description.notesDonneau, AF (reprint author), Univ Liege, Dept Publ Hlth, Med Informat & Biostat, Sart Tilman B23, B-4000 Liege, Belgium. afdonneau@ulg.ac.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/10543406.2014.920864-
dc.identifier.isi000353386300013-
item.validationecoom 2016-
item.contributorDonneau, A.F.-
item.contributorMauer, M.-
item.contributorLambert, Philippe-
item.contributorMOLENBERGHS, Geert-
item.contributorAlbert, A.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationDonneau, A.F.; Mauer, M.; Lambert, Philippe; MOLENBERGHS, Geert & Albert, A. (2014) Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. In: Journal of Biopharmaceutical Statistics, 25 (3), p. 570-601.-
crisitem.journal.issn1054-3406-
crisitem.journal.eissn1520-5711-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
414.pdfPeer-reviewed author version425.42 kBAdobe PDFView/Open
donneau2014.pdf
  Restricted Access
Published version319.37 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.