Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/17789
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Donneau, A.F. | - |
dc.contributor.author | Mauer, M. | - |
dc.contributor.author | Lambert, Philippe | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | Albert, A. | - |
dc.date.accessioned | 2014-11-14T09:47:10Z | - |
dc.date.available | 2014-11-14T09:47:10Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Journal of Biopharmaceutical Statistics, 25 (3), p. 570-601 | - |
dc.identifier.issn | 1054-3406 | - |
dc.identifier.uri | http://hdl.handle.net/1942/17789 | - |
dc.description.abstract | The application of multiple imputation (MI) techniques as a preliminary step to handle missing values in data analysis is well established. The MI methods can be classified into two broad classes, the joint modeling and the fully conditional specification approaches. Their relative performance for longitudinal ordinal data setting is not well documented. This paper intends to ll this gap by conducting a large simulation study on the estimation of the parameters of a longitudinal proportional odds model. The two MI methods are also illustrated on a real dataset of quality of life in a cancer clinical trial. | - |
dc.language.iso | en | - |
dc.rights | (C) Taylor & Francis Group, LLC | - |
dc.subject.other | intermittent missingness; longitudinal analysis; missing at random; multiple imputation; nonmonotone missingness; ordinal variables | - |
dc.title | Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 601 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 570 | - |
dc.identifier.volume | 25 | - |
local.format.pages | 43 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Donneau, AF (reprint author), Univ Liege, Dept Publ Hlth, Med Informat & Biostat, Sart Tilman B23, B-4000 Liege, Belgium. afdonneau@ulg.ac.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1080/10543406.2014.920864 | - |
dc.identifier.isi | 000353386300013 | - |
item.validation | ecoom 2016 | - |
item.contributor | Donneau, A.F. | - |
item.contributor | Mauer, M. | - |
item.contributor | Lambert, Philippe | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | Albert, A. | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
item.fullcitation | Donneau, A.F.; Mauer, M.; Lambert, Philippe; MOLENBERGHS, Geert & Albert, A. (2014) Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. In: Journal of Biopharmaceutical Statistics, 25 (3), p. 570-601. | - |
crisitem.journal.issn | 1054-3406 | - |
crisitem.journal.eissn | 1520-5711 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
414.pdf | Peer-reviewed author version | 425.42 kB | Adobe PDF | View/Open |
donneau2014.pdf Restricted Access | Published version | 319.37 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.