Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17855
Full metadata record
DC FieldValueLanguage
dc.contributor.authorREISERT, Steffen-
dc.contributor.authorGeissler, H.-
dc.contributor.authorWeiler, C.-
dc.contributor.authorWAGNER, Patrick-
dc.contributor.authorSchoening, M. J.-
dc.date.accessioned2014-11-24T11:26:13Z-
dc.date.available2014-11-24T11:26:13Z-
dc.date.issued2015-
dc.identifier.citationFOOD CONTROL, 47, p. 615-622-
dc.identifier.issn0956-7135-
dc.identifier.urihttp://hdl.handle.net/1942/17855-
dc.description.abstractThe present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed. (C) 2014 Elsevier Ltd. All rights reserved.-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.rights© 2014 Elsevier Ltd. All rights reserved.-
dc.subject.otherHydrogen peroxide; Calorimetric gas sensor; Metal-oxide semiconductor; Sterilization; Bacillus atrophaeus-
dc.subject.otherhydrogen peroxide; calorimetric gas sensor; metal-oxide semiconductor; sterilization; bacillus atrophaeus-
dc.titleMultiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes-
dc.typeJournal Contribution-
dc.identifier.epage622-
dc.identifier.spage615-
dc.identifier.volume47-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notes[Reisert, S.; Schoening, M. J.] FH Aachen, Inst Nano & Biotechnol, D-52428 Julich, Germany. [Geissler, H.; Weiler, C.] SIG Combibloc Syst GmbH, D-52441 Linnich, Germany. [Wagner, P.] Hasselt Univ, Inst Mat Res, B-3590 Diepenbeek, Belgium.-
local.publisher.placeOXFORD-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.foodcont.2014.07.063-
dc.identifier.isi000343612700086-
item.fullcitationREISERT, Steffen; Geissler, H.; Weiler, C.; WAGNER, Patrick & Schoening, M. J. (2015) Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes. In: FOOD CONTROL, 47, p. 615-622.-
item.fulltextWith Fulltext-
item.validationecoom 2015-
item.contributorREISERT, Steffen-
item.contributorGeissler, H.-
item.contributorWeiler, C.-
item.contributorWAGNER, Patrick-
item.contributorSchoening, M. J.-
item.accessRightsRestricted Access-
crisitem.journal.issn0956-7135-
crisitem.journal.eissn1873-7129-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
reisert 1.pdf
  Restricted Access
Published version2.01 MBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

2
checked on Sep 20, 2024

Page view(s)

276
checked on Sep 7, 2022

Download(s)

262
checked on Sep 7, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.