Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.date.accessioned2014-12-01T11:38:55Z-
dc.date.available2014-12-01T11:38:55Z-
dc.date.issued1980-
dc.identifier.citationPACIFIC JOURNAL OF MATHEMATICS, 87 (2), p. 313-322-
dc.identifier.issn0030-8730-
dc.identifier.urihttp://hdl.handle.net/1942/17903-
dc.description.abstractIn this paper we give relations between the Radon Nikodym-Property (RNP), in sequentially complete locally convex spaces, mean convergence of martingales, and α-dentability. (RNP) is equivalent with the property that a certain class of martingales is mean convergent, while <7-dentability is equivalent with the property that the same class of martingales is mean Cauchy. We give an example of a σ-dentable space not having the (RNP). It is also an example of a sequentially incomplete space of in tegrable functions, the range space being sequentially complete.-
dc.language.isoen-
dc.titleThe Radon-Nikodym-Property, σ-dentability and martingales in locally convex spaces.-
dc.typeJournal Contribution-
dc.identifier.epage322-
dc.identifier.issue2-
dc.identifier.spage313-
dc.identifier.volume87-
local.bibliographicCitation.jcatA2-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.urlhttp://projecteuclid.org/euclid.pjm/1102779968-
item.accessRightsOpen Access-
item.fullcitationEGGHE, Leo (1980) The Radon-Nikodym-Property, σ-dentability and martingales in locally convex spaces.. In: PACIFIC JOURNAL OF MATHEMATICS, 87 (2), p. 313-322.-
item.fulltextWith Fulltext-
crisitem.journal.issn0030-8730-
crisitem.journal.eissn****-****-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
euclid.pjm.1102779968.pdf856.38 kBAdobe PDFView/Open
Show simple item record

Page view(s)

60
checked on Jun 27, 2022

Download(s)

88
checked on Jun 27, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.