Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.date.accessioned2014-12-01T11:38:55Z-
dc.date.available2014-12-01T11:38:55Z-
dc.date.issued1980-
dc.identifier.citationPACIFIC JOURNAL OF MATHEMATICS, 87 (2), p. 313-322-
dc.identifier.issn0030-8730-
dc.identifier.urihttp://hdl.handle.net/1942/17903-
dc.description.abstractIn this paper we give relations between the Radon Nikodym-Property (RNP), in sequentially complete locally convex spaces, mean convergence of martingales, and α-dentability. (RNP) is equivalent with the property that a certain class of martingales is mean convergent, while <7-dentability is equivalent with the property that the same class of martingales is mean Cauchy. We give an example of a σ-dentable space not having the (RNP). It is also an example of a sequentially incomplete space of in tegrable functions, the range space being sequentially complete.-
dc.language.isoen-
dc.titleThe Radon-Nikodym-Property, σ-dentability and martingales in locally convex spaces.-
dc.typeJournal Contribution-
dc.identifier.epage322-
dc.identifier.issue2-
dc.identifier.spage313-
dc.identifier.volume87-
local.bibliographicCitation.jcatA2-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.urlhttp://projecteuclid.org/euclid.pjm/1102779968-
item.contributorEGGHE, Leo-
item.fullcitationEGGHE, Leo (1980) The Radon-Nikodym-Property, σ-dentability and martingales in locally convex spaces.. In: PACIFIC JOURNAL OF MATHEMATICS, 87 (2), p. 313-322.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
crisitem.journal.issn0030-8730-
crisitem.journal.eissn1945-5844-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
euclid.pjm.1102779968.pdf856.38 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.