Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/17944
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.date.accessioned2014-12-11T13:28:09Z-
dc.date.available2014-12-11T13:28:09Z-
dc.date.issued1983-
dc.identifier.citationBulletin of the Polish Academy of Sciences, 31 (9-12), p. 415-426-
dc.identifier.issn0239-7528-
dc.identifier.urihttp://hdl.handle.net/1942/17944-
dc.description.abstractThe author gives a (strong) sufficient condition that insures the norm convergence of positive subpramarts valued in Banach lattices with the Radon-Nikodym property. The method consists of extending a lemma of Neveu about sequences of real-valued submartingales to be able to apply the techniques of Davis-Ghoussoub-Lindenstrauss. A recent result of M. Talagrand [Isr. J. Math. 44, 213-220 (1983; Zbl 0523.46016)] gives the result without the additional condition imposed by the author. This theorem of Talagrand states that every separable Banach lattice with the Radon-Nikodym property is actually a dual Banach lattice.-
dc.language.isoen-
dc.subject.othernorm convergence of positive subpramarts valued in Banach lattices; RadonNikodym property; dual Banach lattice-
dc.titleStrong convergence of positive subpramarts in Banach lattices-
dc.typeJournal Contribution-
dc.identifier.epage426-
dc.identifier.issue9-12-
dc.identifier.spage415-
dc.identifier.volume31-
local.bibliographicCitation.jcatA2-
local.type.refereedRefereed-
local.type.specifiedArticle-
item.contributorEGGHE, Leo-
item.fullcitationEGGHE, Leo (1983) Strong convergence of positive subpramarts in Banach lattices. In: Bulletin of the Polish Academy of Sciences, 31 (9-12), p. 415-426.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
crisitem.journal.issn0239-7528-
crisitem.journal.eissn2300-1917-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.