Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18068
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHUZAK, Renato-
dc.contributor.authorDE MAESSCHALCK, Peter-
dc.date.accessioned2015-01-06T14:44:09Z-
dc.date.available2015-01-06T14:44:09Z-
dc.date.issued2014-
dc.identifier.citationElectronic Journal of Qualitative Theory of Differential Equations (66), p. 1-10-
dc.identifier.issn1417-3875-
dc.identifier.urihttp://hdl.handle.net/1942/18068-
dc.description.abstractUsing techniques from singular perturbations we show that for any n≥6 and m≥2 there are Liénard equations {x˙=y−F(x), y˙=G(x)}, with F a polynomial of degree n and G a polynomial of degree m, having at least 2[n−2/2]+[m/2] hyperbolic limit cycles, where [⋅] denotes "the greatest integer equal or below".-
dc.language.isoen-
dc.subject.otherslow-fast systems; slow divergence integral; generalized Liénard equations-
dc.titleSlow divergence integrals in generalized Liénard equations near centers-
dc.typeJournal Contribution-
dc.identifier.epage10-
dc.identifier.issue66-
dc.identifier.spage1-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.urlhttp://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3307-
item.contributorHUZAK, Renato-
item.contributorDE MAESSCHALCK, Peter-
item.fullcitationHUZAK, Renato & DE MAESSCHALCK, Peter (2014) Slow divergence integrals in generalized Liénard equations near centers. In: Electronic Journal of Qualitative Theory of Differential Equations (66), p. 1-10.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1417-3875-
crisitem.journal.eissn1417-3875-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
p3307.pdf367.63 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.