Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/18068
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HUZAK, Renato | - |
dc.contributor.author | DE MAESSCHALCK, Peter | - |
dc.date.accessioned | 2015-01-06T14:44:09Z | - |
dc.date.available | 2015-01-06T14:44:09Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Electronic Journal of Qualitative Theory of Differential Equations (66), p. 1-10 | - |
dc.identifier.issn | 1417-3875 | - |
dc.identifier.uri | http://hdl.handle.net/1942/18068 | - |
dc.description.abstract | Using techniques from singular perturbations we show that for any n≥6 and m≥2 there are Liénard equations {x˙=y−F(x), y˙=G(x)}, with F a polynomial of degree n and G a polynomial of degree m, having at least 2[n−2/2]+[m/2] hyperbolic limit cycles, where [⋅] denotes "the greatest integer equal or below". | - |
dc.language.iso | en | - |
dc.subject.other | slow-fast systems; slow divergence integral; generalized Liénard equations | - |
dc.title | Slow divergence integrals in generalized Liénard equations near centers | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 10 | - |
dc.identifier.issue | 66 | - |
dc.identifier.spage | 1 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3307 | - |
item.contributor | HUZAK, Renato | - |
item.contributor | DE MAESSCHALCK, Peter | - |
item.fullcitation | HUZAK, Renato & DE MAESSCHALCK, Peter (2014) Slow divergence integrals in generalized Liénard equations near centers. In: Electronic Journal of Qualitative Theory of Differential Equations (66), p. 1-10. | - |
item.accessRights | Closed Access | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 1417-3875 | - |
crisitem.journal.eissn | 1417-3875 | - |
Appears in Collections: | Research publications |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.