Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/18125Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | MARTIN, Niels | - |
| dc.contributor.author | DEPAIRE, Benoit | - |
| dc.contributor.author | CARIS, An | - |
| dc.date.accessioned | 2015-01-19T11:21:46Z | - |
| dc.date.available | 2015-01-19T11:21:46Z | - |
| dc.date.issued | 2014 | - |
| dc.identifier.citation | 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) Proceedings, p. 381-388 | - |
| dc.identifier.isbn | 9781479945191 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/18125 | - |
| dc.description.abstract | This paper focuses on the potential of process mining to support the construction of business process simulation (BPS) models. To date, research efforts are scarce and have a rather conceptual nature. Moreover, publications fail to explicit the complex internal structure of a simulation model. The current paper outlines the general structure of a BPS model. Building on these foundations, modeling tasks for the main components of a BPS model are identified. Moreover, the potential value of process mining and the state of the art in literature are discussed. Consequently, a multitude of promising research challenges are identified. In this sense, the current paper can guide future research on the use of process mining in a BPS context. | - |
| dc.language.iso | en | - |
| dc.publisher | IEEE | - |
| dc.subject.other | business process simulation; process mining; event log knowledge; simulation model construction | - |
| dc.title | The use of process mining in a business process simulation context: overview and challenges | - |
| dc.type | Proceedings Paper | - |
| local.bibliographicCitation.conferencedate | 9-12/12/2014 | - |
| local.bibliographicCitation.conferencename | 2014 IEEE Symposium on Computational Intelligence and Data Mining | - |
| local.bibliographicCitation.conferenceplace | Orlando (Florida), United States | - |
| dc.identifier.epage | 388 | - |
| dc.identifier.spage | 381 | - |
| local.bibliographicCitation.jcat | C1 | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Proceedings Paper | - |
| local.identifier.vabb | c:vabb:378770 | - |
| dc.identifier.doi | 10.1109/CIDM.2014.7008693 | - |
| dc.identifier.isi | 000381485400053 | - |
| local.bibliographicCitation.btitle | 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) Proceedings | - |
| item.contributor | MARTIN, Niels | - |
| item.contributor | DEPAIRE, Benoit | - |
| item.contributor | CARIS, An | - |
| item.accessRights | Closed Access | - |
| item.fullcitation | MARTIN, Niels; DEPAIRE, Benoit & CARIS, An (2014) The use of process mining in a business process simulation context: overview and challenges. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) Proceedings, p. 381-388. | - |
| item.fulltext | No Fulltext | - |
| item.validation | ecoom 2017 | - |
| item.validation | vabb 2018 | - |
| Appears in Collections: | Research publications | |
SCOPUSTM
Citations
24
checked on Oct 29, 2025
WEB OF SCIENCETM
Citations
18
checked on Nov 2, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.