Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18293
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHUZAK, Renato-
dc.contributor.authorDE MAESSCHALCK, Peter-
dc.date.accessioned2015-02-09T09:46:58Z-
dc.date.available2015-02-09T09:46:58Z-
dc.date.issued2014-
dc.identifier.citationELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS (66), p. 1-10-
dc.identifier.issn1417-3875-
dc.identifier.urihttp://hdl.handle.net/1942/18293-
dc.description.abstractUsing techniques from singular perturbations we show that for any n >= 6 and m >= 2 there are Lienard equations {x = y - F(x), y = G ( x)}, with F a polynomial of degree n and G a polynomial of degree m, having at least 2[n-2/2] + [m/2] hyperbolic limit cycles, where [center dot] denotes "the greatest integer equal or below".-
dc.language.isoen-
dc.publisherUNIV SZEGED, BOLYAI INSTITUTE-
dc.subject.othergeneralized Liénard equations; limit cycles; slow divergence integral; slowfast systems-
dc.subject.othergeneralized Lienard equations; limit cycles; slow divergence integral; slow-fast systems-
dc.titleSlow divergence integrals in generalized Lienard equations near centers-
dc.typeJournal Contribution-
dc.identifier.epage10-
dc.identifier.issue66-
dc.identifier.spage1-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notes[Huzak, Renato; De Maesschalck, Peter] Hasselt Univ, B-3590 Diepenbeek, Belgium.-
local.publisher.placeSZEGED-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.isi000347538200001-
item.contributorHUZAK, Renato-
item.contributorDE MAESSCHALCK, Peter-
item.fullcitationHUZAK, Renato & DE MAESSCHALCK, Peter (2014) Slow divergence integrals in generalized Lienard equations near centers. In: ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS (66), p. 1-10.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.validationecoom 2016-
crisitem.journal.issn1417-3875-
crisitem.journal.eissn1417-3875-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
p3307.pdf367.63 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.