Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/182
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCao, Ricardo-
dc.contributor.authorJANSSEN, Paul-
dc.contributor.authorVERAVERBEKE, Noel-
dc.date.accessioned2004-08-28T08:16:04Z-
dc.date.available2004-08-28T08:16:04Z-
dc.date.issued2000-
dc.identifier.citationCanad. J. Statist., 28. p. 97-111-
dc.identifier.issn0319-5724-
dc.identifier.urihttp://hdl.handle.net/1942/182-
dc.description.abstractWell-described tools for comparing two populations via their cumulative distribution functions are the so-called relative distribution R(t) = F { F-0(-1)(t)} and the corresponding relative density (or grade density) r(t). The authors propose a kernel-type estimator for the relative density r (t) in the situation where independent samples of right-censored observations are available from the two populations. It is shown that the estimator admits an asymptotic: representation from which its limit distribution can be obtained. The results generalize those of Cwik & Mielniczuk: (1993) in the complete sample case.-
dc.language.isoen-
dc.publisherCANADIAN JOURNAL STATISTICS-
dc.subjectMathematical Statistics-
dc.subjectNon and semiparametric methods-
dc.titleRelative density estimation with censored data-
dc.typeJournal Contribution-
dc.identifier.epage111-
dc.identifier.spage97-
dc.identifier.volume28-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.isi000087718100007-
item.fulltextNo Fulltext-
item.contributorCao, Ricardo-
item.contributorJANSSEN, Paul-
item.contributorVERAVERBEKE, Noel-
item.fullcitationCao, Ricardo; JANSSEN, Paul & VERAVERBEKE, Noel (2000) Relative density estimation with censored data. In: Canad. J. Statist., 28. p. 97-111.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.