Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18398
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAcheampong, E.-
dc.contributor.authorAERTS, Marc-
dc.contributor.authorHENS, Niel-
dc.contributor.authorOkyere, E.-
dc.contributor.authorBoyetey, D.-
dc.date.accessioned2015-03-09T11:30:17Z-
dc.date.available2015-03-09T11:30:17Z-
dc.date.issued2014-
dc.identifier.citationMathematical Theory and Modeling, 4 (2), p. 73-85-
dc.identifier.issn2224-5804-
dc.identifier.urihttp://hdl.handle.net/1942/18398-
dc.description.abstractThis paper studies the effects of the spread of two similarly transmitted infectious diseases with cross protection in an unvaccinated population using a basic SEIR model with vital dynamics (births and deaths). A basic Mathematical model is built-up to study the joint transmission dynamics of diseases in the population. The equilibriums of these models as well as their stabilities are studied. Specifically, the stability results for disease-free and endemic steady states are proven. Finally, numerical simulations of the models are carried out with Matlab / Mathematica to study the behavior of the solutions in different regions of the parameter space.-
dc.language.isoen-
dc.subject.othercross protection; infectious diseases; disease-free and endemic equilibria; numerical simulations; joint modeling-
dc.titleOn a model for the cross-protection of two infectious diseases-
dc.typeJournal Contribution-
dc.identifier.epage85-
dc.identifier.issue2-
dc.identifier.spage73-
dc.identifier.volume4-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.identifier.vabbc:vabb:378569-
item.validationvabb 2016-
item.contributorAcheampong, E.-
item.contributorAERTS, Marc-
item.contributorHENS, Niel-
item.contributorOkyere, E.-
item.contributorBoyetey, D.-
item.fullcitationAcheampong, E.; AERTS, Marc; HENS, Niel; Okyere, E. & Boyetey, D. (2014) On a model for the cross-protection of two infectious diseases. In: Mathematical Theory and Modeling, 4 (2), p. 73-85.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn2224-5804-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Acheampong et al 2014.pdfPublished version610.91 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.