Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/18577Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Donneau, A.F. | - |
| dc.contributor.author | Mauer, M. | - |
| dc.contributor.author | MOLENBERGHS, Geert | - |
| dc.contributor.author | Albert, A. | - |
| dc.date.accessioned | 2015-04-02T09:51:27Z | - |
| dc.date.available | 2015-04-02T09:51:27Z | - |
| dc.date.issued | 2015 | - |
| dc.identifier.citation | COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 44 (5), p. 1311-1338 | - |
| dc.identifier.issn | 0361-0918 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/18577 | - |
| dc.description.abstract | Multiple imputation (MI) is now a reference solution for handling missing data. The default method for MI is the Multivariate Normal Imputation (MNI) algorithm which is based on the multivariate normal distribution. In the presence of longitudinal ordinal missing data, where the Gaussian assumption is no longer valid, application of the MNI method is questionable. This simulation study compares the performance of the MNI and ordinal imputation regression model for incomplete longitudinal ordinal data for situations covering various numbers of categories of the ordinal outcome, time occasions, sample sizes, rates of missingness, well-balanced and skewed data. | - |
| dc.language.iso | en | - |
| dc.subject.other | ordinal variables; longitudinal analysis; missing at random; multiple imputation | - |
| dc.title | A simulation study comparing multiple imputation methods for incomplete longitudinal ordinal data | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 1338 | - |
| dc.identifier.issue | 5 | - |
| dc.identifier.spage | 1311 | - |
| dc.identifier.volume | 44 | - |
| local.bibliographicCitation.jcat | A1 | - |
| dc.description.notes | E-mail Addresses:afdonneau@ulg.ac.be | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.identifier.doi | 10.1080/03610918.2013.818690 | - |
| dc.identifier.isi | 000343647300016 | - |
| item.validation | ecoom 2015 | - |
| item.contributor | Donneau, A.F. | - |
| item.contributor | Mauer, M. | - |
| item.contributor | MOLENBERGHS, Geert | - |
| item.contributor | Albert, A. | - |
| item.accessRights | Closed Access | - |
| item.fullcitation | Donneau, A.F.; Mauer, M.; MOLENBERGHS, Geert & Albert, A. (2015) A simulation study comparing multiple imputation methods for incomplete longitudinal ordinal data. In: COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 44 (5), p. 1311-1338. | - |
| item.fulltext | With Fulltext | - |
| crisitem.journal.issn | 0361-0918 | - |
| crisitem.journal.eissn | 1532-4141 | - |
| Appears in Collections: | Research publications | |
SCOPUSTM
Citations
8
checked on Nov 3, 2025
WEB OF SCIENCETM
Citations
7
checked on Nov 2, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.