Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDonneau, A.F.-
dc.contributor.authorMauer, M.-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorAlbert, A.-
dc.date.accessioned2015-04-02T09:51:27Z-
dc.date.available2015-04-02T09:51:27Z-
dc.date.issued2015-
dc.identifier.citationCOMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 44 (5), p. 1311-1338-
dc.identifier.issn0361-0918-
dc.identifier.urihttp://hdl.handle.net/1942/18577-
dc.description.abstractMultiple imputation (MI) is now a reference solution for handling missing data. The default method for MI is the Multivariate Normal Imputation (MNI) algorithm which is based on the multivariate normal distribution. In the presence of longitudinal ordinal missing data, where the Gaussian assumption is no longer valid, application of the MNI method is questionable. This simulation study compares the performance of the MNI and ordinal imputation regression model for incomplete longitudinal ordinal data for situations covering various numbers of categories of the ordinal outcome, time occasions, sample sizes, rates of missingness, well-balanced and skewed data.-
dc.language.isoen-
dc.subject.otherordinal variables; longitudinal analysis; missing at random; multiple imputation-
dc.titleA simulation study comparing multiple imputation methods for incomplete longitudinal ordinal data-
dc.typeJournal Contribution-
dc.identifier.epage1338-
dc.identifier.issue5-
dc.identifier.spage1311-
dc.identifier.volume44-
local.bibliographicCitation.jcatA1-
dc.description.notesE-mail Addresses:afdonneau@ulg.ac.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1080/03610918.2013.818690-
dc.identifier.isi000343647300016-
item.validationecoom 2015-
item.contributorDonneau, A.F.-
item.contributorMauer, M.-
item.contributorMOLENBERGHS, Geert-
item.contributorAlbert, A.-
item.fulltextWith Fulltext-
item.accessRightsClosed Access-
item.fullcitationDonneau, A.F.; Mauer, M.; MOLENBERGHS, Geert & Albert, A. (2015) A simulation study comparing multiple imputation methods for incomplete longitudinal ordinal data. In: COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 44 (5), p. 1311-1338.-
crisitem.journal.issn0361-0918-
crisitem.journal.eissn1532-4141-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
437.pdf145.3 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.