Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18780
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZHU, Haixing-
dc.contributor.authorZHANG, Yinhuo-
dc.date.accessioned2015-04-24T07:59:33Z-
dc.date.available2015-04-24T07:59:33Z-
dc.date.issued2015-
dc.identifier.citationJOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167-
dc.identifier.issn0022-4049-
dc.identifier.urihttp://hdl.handle.net/1942/18780-
dc.description.abstractLet $(H, R)$ be a quasitriangular weak Hopf algebra over a field k. We show that there is a braided monoidal isomorphism between the Yetter–Drinfeld module category $_H^H{YD)$ over H and the category of comodules over some braided Hopf algebra _RH in the category $_HM$. Based on this isomorphism, we prove that every braided bi- Galois object A over the braided Hopf algebra $_RH$ defines a braided autoequivalence of the category $_H^H{YD}$ if and only if A is quantum commutative. In case H is semisimple over an algebraically closed field, i.e. the fusion case, then every braided autoequivalence of $_H^H{YD}$ trivializable on $_HM$ is determined by such a quantum commutative Galois object. The quantum commutative Galois objects in $_HM$ form a group measuring the Brauer group of $(H, R)$ as studied in [21] in the Hopf algebra case.-
dc.description.sponsorshipThe first author would like to thank BOF of UHasselt for the financial support.-
dc.language.isoen-
dc.rights© 2015 Elsevier B.V. All rights reserved.-
dc.subject.otherMSC: 16T05; 16K50-
dc.titleBraided autoequivalences and quantum commutative bi-Galois objects-
dc.typeJournal Contribution-
dc.identifier.epage4167-
dc.identifier.spage4144-
dc.identifier.volume219-
local.bibliographicCitation.jcatA1-
dc.description.notesZhu, HX (reprint author), Nanjing Forest Univ, Sch Econ & Management, Longpan Rd 159, Nanjing 210037, Peoples R China. zhuhaixing@163.com; yinhuo.zhang@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jpaa.2015.02.012-
dc.identifier.isi000354001200024-
item.contributorZHU, Haixing-
item.contributorZHANG, Yinhuo-
item.fullcitationZHU, Haixing & ZHANG, Yinhuo (2015) Braided autoequivalences and quantum commutative bi-Galois objects. In: JOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167.-
item.accessRightsRestricted Access-
item.fulltextWith Fulltext-
item.validationecoom 2016-
crisitem.journal.issn0022-4049-
crisitem.journal.eissn1873-1376-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Braided autoequivalences and quantum commutative bi-Galois objects.pdf
  Restricted Access
Published version465.18 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.