Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18780
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZHU, Haixing-
dc.contributor.authorZHANG, Yinhuo-
dc.date.accessioned2015-04-24T07:59:33Z-
dc.date.available2015-04-24T07:59:33Z-
dc.date.issued2015-
dc.identifier.citationJOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167-
dc.identifier.issn0022-4049-
dc.identifier.urihttp://hdl.handle.net/1942/18780-
dc.description.abstractLet $(H, R)$ be a quasitriangular weak Hopf algebra over a field k. We show that there is a braided monoidal isomorphism between the Yetter–Drinfeld module category $_H^H{YD)$ over H and the category of comodules over some braided Hopf algebra _RH in the category $_HM$. Based on this isomorphism, we prove that every braided bi- Galois object A over the braided Hopf algebra $_RH$ defines a braided autoequivalence of the category $_H^H{YD}$ if and only if A is quantum commutative. In case H is semisimple over an algebraically closed field, i.e. the fusion case, then every braided autoequivalence of $_H^H{YD}$ trivializable on $_HM$ is determined by such a quantum commutative Galois object. The quantum commutative Galois objects in $_HM$ form a group measuring the Brauer group of $(H, R)$ as studied in [21] in the Hopf algebra case.-
dc.description.sponsorshipThe first author would like to thank BOF of UHasselt for the financial support.-
dc.language.isoen-
dc.rights© 2015 Elsevier B.V. All rights reserved.-
dc.subject.otherMSC: 16T05; 16K50-
dc.titleBraided autoequivalences and quantum commutative bi-Galois objects-
dc.typeJournal Contribution-
dc.identifier.epage4167-
dc.identifier.spage4144-
dc.identifier.volume219-
local.bibliographicCitation.jcatA1-
dc.description.notesZhu, HX (reprint author), Nanjing Forest Univ, Sch Econ & Management, Longpan Rd 159, Nanjing 210037, Peoples R China. zhuhaixing@163.com; yinhuo.zhang@uhasselt.be-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jpaa.2015.02.012-
dc.identifier.isi000354001200024-
item.validationecoom 2016-
item.fulltextWith Fulltext-
item.contributorZHU, Haixing-
item.contributorZHANG, Yinhuo-
item.fullcitationZHU, Haixing & ZHANG, Yinhuo (2015) Braided autoequivalences and quantum commutative bi-Galois objects. In: JOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167.-
item.accessRightsRestricted Access-
crisitem.journal.issn0022-4049-
crisitem.journal.eissn1873-1376-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Braided autoequivalences and quantum commutative bi-Galois objects.pdf
  Restricted Access
Published version465.18 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

12
checked on Dec 13, 2025

WEB OF SCIENCETM
Citations

12
checked on Dec 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.