Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/18780
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ZHU, Haixing | - |
dc.contributor.author | ZHANG, Yinhuo | - |
dc.date.accessioned | 2015-04-24T07:59:33Z | - |
dc.date.available | 2015-04-24T07:59:33Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | JOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167 | - |
dc.identifier.issn | 0022-4049 | - |
dc.identifier.uri | http://hdl.handle.net/1942/18780 | - |
dc.description.abstract | Let $(H, R)$ be a quasitriangular weak Hopf algebra over a field k. We show that there is a braided monoidal isomorphism between the Yetter–Drinfeld module category $_H^H{YD)$ over H and the category of comodules over some braided Hopf algebra _RH in the category $_HM$. Based on this isomorphism, we prove that every braided bi- Galois object A over the braided Hopf algebra $_RH$ defines a braided autoequivalence of the category $_H^H{YD}$ if and only if A is quantum commutative. In case H is semisimple over an algebraically closed field, i.e. the fusion case, then every braided autoequivalence of $_H^H{YD}$ trivializable on $_HM$ is determined by such a quantum commutative Galois object. The quantum commutative Galois objects in $_HM$ form a group measuring the Brauer group of $(H, R)$ as studied in [21] in the Hopf algebra case. | - |
dc.description.sponsorship | The first author would like to thank BOF of UHasselt for the financial support. | - |
dc.language.iso | en | - |
dc.rights | © 2015 Elsevier B.V. All rights reserved. | - |
dc.subject.other | MSC: 16T05; 16K50 | - |
dc.title | Braided autoequivalences and quantum commutative bi-Galois objects | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 4167 | - |
dc.identifier.spage | 4144 | - |
dc.identifier.volume | 219 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Zhu, HX (reprint author), Nanjing Forest Univ, Sch Econ & Management, Longpan Rd 159, Nanjing 210037, Peoples R China. zhuhaixing@163.com; yinhuo.zhang@uhasselt.be | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1016/j.jpaa.2015.02.012 | - |
dc.identifier.isi | 000354001200024 | - |
item.contributor | ZHU, Haixing | - |
item.contributor | ZHANG, Yinhuo | - |
item.fullcitation | ZHU, Haixing & ZHANG, Yinhuo (2015) Braided autoequivalences and quantum commutative bi-Galois objects. In: JOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167. | - |
item.accessRights | Restricted Access | - |
item.fulltext | With Fulltext | - |
item.validation | ecoom 2016 | - |
crisitem.journal.issn | 0022-4049 | - |
crisitem.journal.eissn | 1873-1376 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Braided autoequivalences and quantum commutative bi-Galois objects.pdf Restricted Access | Published version | 465.18 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.