Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/18780Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | ZHU, Haixing | - |
| dc.contributor.author | ZHANG, Yinhuo | - |
| dc.date.accessioned | 2015-04-24T07:59:33Z | - |
| dc.date.available | 2015-04-24T07:59:33Z | - |
| dc.date.issued | 2015 | - |
| dc.identifier.citation | JOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167 | - |
| dc.identifier.issn | 0022-4049 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/18780 | - |
| dc.description.abstract | Let $(H, R)$ be a quasitriangular weak Hopf algebra over a field k. We show that there is a braided monoidal isomorphism between the Yetter–Drinfeld module category $_H^H{YD)$ over H and the category of comodules over some braided Hopf algebra _RH in the category $_HM$. Based on this isomorphism, we prove that every braided bi- Galois object A over the braided Hopf algebra $_RH$ defines a braided autoequivalence of the category $_H^H{YD}$ if and only if A is quantum commutative. In case H is semisimple over an algebraically closed field, i.e. the fusion case, then every braided autoequivalence of $_H^H{YD}$ trivializable on $_HM$ is determined by such a quantum commutative Galois object. The quantum commutative Galois objects in $_HM$ form a group measuring the Brauer group of $(H, R)$ as studied in [21] in the Hopf algebra case. | - |
| dc.description.sponsorship | The first author would like to thank BOF of UHasselt for the financial support. | - |
| dc.language.iso | en | - |
| dc.rights | © 2015 Elsevier B.V. All rights reserved. | - |
| dc.subject.other | MSC: 16T05; 16K50 | - |
| dc.title | Braided autoequivalences and quantum commutative bi-Galois objects | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 4167 | - |
| dc.identifier.spage | 4144 | - |
| dc.identifier.volume | 219 | - |
| local.bibliographicCitation.jcat | A1 | - |
| dc.description.notes | Zhu, HX (reprint author), Nanjing Forest Univ, Sch Econ & Management, Longpan Rd 159, Nanjing 210037, Peoples R China. zhuhaixing@163.com; yinhuo.zhang@uhasselt.be | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.identifier.doi | 10.1016/j.jpaa.2015.02.012 | - |
| dc.identifier.isi | 000354001200024 | - |
| item.validation | ecoom 2016 | - |
| item.fulltext | With Fulltext | - |
| item.contributor | ZHU, Haixing | - |
| item.contributor | ZHANG, Yinhuo | - |
| item.fullcitation | ZHU, Haixing & ZHANG, Yinhuo (2015) Braided autoequivalences and quantum commutative bi-Galois objects. In: JOURNAL OF PURE AND APPLIED ALGEBRA, 219, p. 4144-4167. | - |
| item.accessRights | Restricted Access | - |
| crisitem.journal.issn | 0022-4049 | - |
| crisitem.journal.eissn | 1873-1376 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Braided autoequivalences and quantum commutative bi-Galois objects.pdf Restricted Access | Published version | 465.18 kB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
12
checked on Dec 13, 2025
WEB OF SCIENCETM
Citations
12
checked on Dec 12, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.