Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18902
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2015-05-27T13:28:43Z-
dc.date.available2015-05-27T13:28:43Z-
dc.date.issued2015-
dc.identifier.citationSelecta Mathematica-New Series, 21 (2), p. 555-603-
dc.identifier.issn1022-1824-
dc.identifier.urihttp://hdl.handle.net/1942/18902-
dc.description.abstractWe prove that complete -Calabi-Yau algebras in the sense of Ginzburg are derived from superpotentials.-
dc.language.isoen-
dc.publisherSPRINGER BASEL AG-
dc.rights© Springer Basel 2014.-
dc.subject.othernon-commutative geometry; superpotential; Calabi-Yau algebra; Ginzburg algebra-
dc.subject.otherNon-commutative geometry; Superpotential; Calabi-Yau algebra; Ginzburg algebra-
dc.titleCalabi-Yau algebras and superpotentials-
dc.typeJournal Contribution-
dc.identifier.epage603-
dc.identifier.issue2-
dc.identifier.spage555-
dc.identifier.volume21-
local.format.pages49-
local.bibliographicCitation.jcatA1-
dc.description.notesUniv Hasselt, B-3590 Diepenbeek, Belgium.-
local.publisher.placeBASEL-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1007/s00029-014-0166-6-
dc.identifier.isi000353355600004-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationVAN DEN BERGH, Michel (2015) Calabi-Yau algebras and superpotentials. In: Selecta Mathematica-New Series, 21 (2), p. 555-603.-
item.validationecoom 2016-
item.fulltextWith Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn1022-1824-
crisitem.journal.eissn1420-9020-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
art%3A10.1007%2Fs00029-014-0166-6.pdf
  Restricted Access
544.73 kBAdobe PDFView/Open    Request a copy
Show simple item record

SCOPUSTM   
Citations

73
checked on Feb 7, 2026

WEB OF SCIENCETM
Citations

64
checked on Feb 6, 2026

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.