Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/19649
Title: Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra
Authors: DELLO, Jeroen 
ZHANG, Yinhuo 
Issue Date: 2016
Source: JOURNAL OF ALGEBRA, 445, p. 244-279
Abstract: Let (H, R)be a finite dimensional quasitriangular Hopf al-gebra over a field k, and HMthe representation category ofH. In this paper, we study the braided autoequivalences of the Drinfeld center HHYDtrivializable on HM. We establish a group isomorphism between the group of those autoequiv-alences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra RH. We then apply this isomorphism to obtain a categorical inter-pretation of the exact sequence of the equivariant Brauer group BM(k, H, R)in [18]. To this aim, we have to develop the braided bi-Galois theory established by Schauenburg in [14,15], which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category.
Notes: Zhang, YH (reprint author), Univ Hasselt, Dept Math, Agoralaan 1, B-3590 Diepenbeek, Belgium. dellojeroen@gmail.com; yinhuo.zhang@uhasselt.be
Keywords: Brauer group; Hopf algebra; braided autoequivalence
Document URI: http://hdl.handle.net/1942/19649
ISSN: 0021-8693
e-ISSN: 1090-266X
DOI: 10.1016/j.jalgebra.2015.08.005
ISI #: 000365826900013
Rights: © 2015 Elsevier Inc. All rights reserved.
Category: A1
Type: Journal Contribution
Validations: ecoom 2016
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
braided autoequivalences and the Brauer group of a QT Hopf algebra.pdf
  Restricted Access
Main article1.01 MBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

3
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

4
checked on May 14, 2022

Page view(s)

52
checked on May 20, 2022

Download(s)

42
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.